Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38
result(s) for
"Tikhonenkov, Denis V."
Sort by:
Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista
by
Kaplan, Maia
,
Smirnov, Alexey
,
Mylnikov, Alexander P.
in
Biological Evolution
,
Centrohelids
,
Eukaryota - classification
2016
Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.
Journal Article
Non-photosynthetic predators are sister to red algae
2019
Rhodophyta (red algae) is one of three lineages of Archaeplastida
1
, a supergroup that is united by the primary endosymbiotic origin of plastids in eukaryotes
2
,
3
. Red algae are a diverse and species-rich group, members of which are typically photoautotrophic, but are united by a number of highly derived characteristics: they have relatively small intron-poor genomes, reduced metabolism and lack cytoskeletal structures that are associated with motility, flagella and centrioles. This suggests that marked gene loss occurred around their origin
4
; however, this is difficult to reconstruct because they differ so much from the other archaeplastid lineages, and the relationships between these lineages are unclear. Here we describe the novel eukaryotic phylum Rhodelphidia and, using phylogenomics, demonstrate that it is a closely related sister to red algae. However, the characteristics of the two
Rhodelphis
species described here are nearly opposite to those that define red algae: they are non-photosynthetic, flagellate predators with gene-rich genomes, along with a relic genome-lacking primary plastid that probably participates in haem synthesis. Overall, these findings alter our views of the origins of Rhodophyta, and Archaeplastida evolution as a whole, as they indicate that mixotrophic feeding—that is, a combination of predation and phototrophy—persisted well into the evolution of the group.
Species of the eukaryotic phylum Rhodelphidia are non-photosynthetic, flagellate predators with gene-rich genomes, in contrast to their closely related sister lineage—the red algae—which are immotile, typically photoautotrophic and have relatively small intron-poor genomes and reduced metabolism.
Journal Article
Microbial predators form a new supergroup of eukaryotes
2022
Molecular phylogenetics of microbial eukaryotes has reshaped the tree of life by establishing broad taxonomic divisions, termed supergroups, that supersede the traditional kingdoms of animals, fungi and plants, and encompass a much greater breadth of eukaryotic diversity
1
. The vast majority of newly discovered species fall into a small number of known supergroups. Recently, however, a handful of species with no clear relationship to other supergroups have been described
2
–
4
, raising questions about the nature and degree of undiscovered diversity, and exposing the limitations of strictly molecular-based exploration. Here we report ten previously undescribed strains of microbial predators isolated through culture that collectively form a diverse new supergroup of eukaryotes, termed Provora. The Provora supergroup is genetically, morphologically and behaviourally distinct from other eukaryotes, and comprises two divergent clades of predators—Nebulidia and Nibbleridia—that are superficially similar to each other, but differ fundamentally in ultrastructure, behaviour and gene content. These predators are globally distributed in marine and freshwater environments, but are numerically rare and have consequently been overlooked by molecular-diversity surveys. In the age of high-throughput analyses, investigation of eukaryotic diversity through culture remains indispensable for the discovery of rare but ecologically and evolutionarily important eukaryotes.
Provora is an ancient supergroup of microbial predators that are genetically, morphologically and behaviourally distinct from other eukaryotes, and comprise two divergent clades of predators—Nebulidia and Nibbleridia—that differ fundamentally in ultrastructure, behaviour and gene content.
Journal Article
New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
by
Strassert, Jürgen F H
,
Mahwash Jamy
,
Tikhonenkov, Denis V
in
Aquatic environment
,
Eukaryotes
,
Genes
2019
The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these “orphan” groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker “TSAR” to accommodate this new mega-assemblage in the phylogeny of eukaryotes.
Journal Article
Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives
by
Kolísko, Martin
,
Mylnikov, Alexander P.
,
Howe, Alexis T.
in
ancestry
,
Animals
,
Apicomplexa - genetics
2015
Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome,sufBandclpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.
Journal Article
Multiple parallel origins of parasitic Marine Alveolates
by
Holt, Corey C.
,
Hehenberger, Elisabeth
,
Jacko-Reynolds, Victoria K. L.
in
14/28
,
14/63
,
45/90
2023
Microbial eukaryotes are important components of marine ecosystems, and the Marine Alveolates (MALVs) are consistently both abundant and diverse in global environmental sequencing surveys. MALVs are dinoflagellates that are thought to be parasites of other protists and animals, but the lack of data beyond ribosomal RNA gene sequences from all but a few described species means much of their biology and evolution remain unknown. Using single-cell transcriptomes from several MALVs and their free-living relatives, we show that MALVs evolved independently from two distinct, free-living ancestors and that their parasitism evolved in parallel. Phylogenomics shows one subgroup (MALV-II and -IV, or Syndiniales) is related to a novel lineage of free-living, eukaryovorous predators, the eleftherids, while the other (MALV-I, or Ichthyodinida) is related to the free-living predator
Oxyrrhis
and retains proteins targeted to a non-photosynthetic plastid. Reconstructing the evolution of photosynthesis, plastids, and parasitism in early-diverging dinoflagellates shows a number of parallels with the evolution of their apicomplexan sisters. In both groups, similar forms of parasitism evolved multiple times and photosynthesis was lost many times. By contrast, complete loss of the plastid organelle is infrequent and, when this does happen, leaves no residual genes.
The Marine Alveolates (MALVs) include important parasites of other protists/animals. Here, using new data from MALV-I, the psammosids, and a new group called the eleftherids, the authors show MALVs, and therefore parasitism in early dinoflagellates, evolved from two distinct free-living ancestors.
Journal Article
Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals
by
Belyakova, Olga I.
,
Mazei, Yuri A.
,
Esaulov, Anton S.
in
Animals
,
Biodiversity
,
Biological Evolution
2020
Background
The origin of animals from their unicellular ancestor was one of the most important events in evolutionary history, but the nature and the order of events leading up to the emergence of multicellular animals are still highly uncertain. The diversity and biology of unicellular relatives of animals have strongly informed our understanding of the transition from single-celled organisms to the multicellular Metazoa. Here, we analyze the cellular structures and complex life cycles of the novel unicellular holozoans
Pigoraptor
and
Syssomonas
(Opisthokonta), and their implications for the origin of animals.
Results
Syssomonas
and
Pigoraptor
are characterized by complex life cycles with a variety of cell types including flagellates, amoeboflagellates, amoeboid non-flagellar cells, and spherical cysts. The life cycles also include the formation of multicellular aggregations and syncytium-like structures, and an unusual diet for single-celled opisthokonts (partial cell fusion and joint sucking of a large eukaryotic prey), all of which provide new insights into the origin of multicellularity in Metazoa. Several existing models explaining the origin of multicellular animals have been put forward, but these data are interestingly consistent with one, the “synzoospore hypothesis.”
Conclusions
The feeding modes of the ancestral metazoan may have been more complex than previously thought, including not only bacterial prey, but also larger eukaryotic cells and organic structures. The ability to feed on large eukaryotic prey could have been a powerful trigger in the formation and development of both aggregative (e.g., joint feeding, which also implies signaling) and clonal (e.g., hypertrophic growth followed by palintomy) multicellular stages that played important roles in the emergence of multicellular animals.
Journal Article
First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes
by
Tikhonenkov, Denis V.
,
Gawryluk, Ryan M. R.
,
Keeling, Patrick J.
in
631/181/2480
,
631/181/757
,
631/208/182
2021
Kinetoplastids are heterotrophic flagellated protists, including important parasites of humans and animals (trypanosomatids), and ecologically important free-living bacterial consumers (bodonids). Phylogenies have shown that the earliest-branching kinetoplastids are all parasites or obligate endosymbionts, whose highly-derived state makes reconstructing the ancestral state of the group challenging. We have isolated new strains of unusual free-living flagellates that molecular phylogeny shows to be most closely related to endosymbiotic and parasitic
Perkinsela
and
Ichthyobodo
species that, together with unidentified environmental sequences, form the clade at the base of kinetoplastids. These strains are therefore the first described free-living prokinetoplastids, and potentially very informative in understanding the evolution and ancestral states of morphological and molecular characteristics described in other kinetoplastids. Overall, we find that these organisms morphologically and ultrastructurally resemble some free-living bodonids and diplonemids, and possess nuclear genomes with few introns, polycistronic mRNA expression, high coding density, and derived traits shared with other kinetoplastids. Their genetic repertoires are more diverse than the best-studied free-living kinetoplastids, which is likely a reflection of their higher metabolic potential. Mitochondrial RNAs of these new species undergo the most extensive U insertion/deletion editing reported so far, and limited deaminative C-to-U and A-to-I editing, but we find no evidence for mitochondrial
trans
-splicing.
Journal Article
Editorial: Mixotrophic, Secondary Heterotrophic, and Parasitic Algae
by
Dorrell, Richard G.
,
Oborník, Miroslav
,
Tikhonenkov, Denis V.
in
Algae
,
Alternative oxidase
,
Biomass
2021
[...]cases are found exclusively among parasites; e.g., in the apicomplexan parasites Gregarina niphandroides (Toso and Omoto,2007) and Cryptosporidium parvum (Zhu et al.,2000), and the parasitic dinoflagellate Hematodinium sp. [...]Kim et al.sequence and analyse the genomes of non-photosynthetic plastids from Spumella-like chrysophytes, tiny heterotrophic bacterivorous flagellates. Three further articles focus on mixotrophic algae (Dal Bo et al.;Dani et al.;Villanova et al.).Dal Bo et al.investigate the mixotrophic growth of Microchloropsis gaditana on different organic compounds, showing through a transcription activator-like effector nuclease (TALE-N) knockout of the mitochondrial alternative oxidase AOX1 that this mixotrophic growth depends primarily on mitochondrial respiration rather than photosynthetic activity (Dal Bo et al.).Dani et al.report that the mixotrophic species Chlorella vulgaris can emit isoprene in phototrophic conditions under light and also when grown as a pure heterotroph on glucose in complete darkness. [...]Jeong et al.show unprecedented insights into the phylogeny and diversity of Spumella-like chrysophytes by the use of nuclear rDNA data, revealing high molecular diversity despite morphologically convergent forms suitable for heterotrophy (Jeong et al.).
Journal Article
Triangulopteris lacunata gen. et sp. nov. (Centroplasthelida), a New Centrohelid Heliozoan from Soil
by
Zagumyonnyi, Dmitry G.
,
Tikhonenkov, Denis V.
,
Radaykina, Liudmila V.
in
centrohelid heliozoans
,
Cloning
,
Cysts
2021
A new genus and species of centrohelid heliozoans, Triangulopteris lacunata gen. et sp. nov. (Pterocystidae Cavalier-Smith and Heyden, 2007), from four geographically remote locations (the Crimean Peninsula, the Dnieper Lowland (the East European Plain), Franz Josef Land, and the Kolyma Lowland (North–Eastern Siberia) was examined using light and electron microscopy. The novel centrohelid is characterized by round shape, 4.3–16.3 μm in diameter, covered with two types of scales: 1.06–4.54 μm long triangular spine scales and 1.22–2.05 μm oval plate scales. Studied centrohelid heliozoan possesses a unique spine scale morphology. The base of scales is represented by a horse hoof-shaped basal plate. The inner surface and lateral wings of spine scales have numerous radial ribs with two ‘pockets’ that are located on both sides of the spine shaft. These pockets are formed by the lateral wings and ends of the basal plate. The cyst formation and transition to a spicules-bearing stage were noted. Additionally, phylogenetic tree was constructed based on SSU rRNA sequences including the strain HF-25 from the permafrost of Kolyma Lowland. The resulting phylogeny recovered it within the clade Pterista, while forming a separate sister lineage to H2 clade, which only had included freshwater environmental sequences.
Journal Article