Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
53
result(s) for
"Turrigiano, Gina G"
Sort by:
The dialectic of Hebb and homeostasis
2017
It has become widely accepted that homeostatic and Hebbian plasticity mechanisms work hand in glove to refine neural circuit function. Nonetheless, our understanding of how these fundamentally distinct forms of plasticity compliment (and under some circumstances interfere with) each other remains rudimentary. Here, I describe some of the recent progress of the field, as well as some of the deep puzzles that remain. These include unravelling the spatial and temporal scales of different homeostatic and Hebbian mechanisms, determining which aspects of network function are under homeostatic control, and understanding when and how homeostatic and Hebbian mechanisms must be segregated within neural circuits to prevent interference.
This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.
Journal Article
Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions
2017
We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next provide a synopsis of the outstanding questions that emerged from the discussion at the end of the meeting and finally suggest potential directions of research that we believe are most promising to develop an understanding of how these two forms of plasticity interact to facilitate functional changes in the brain.
This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.
Journal Article
Ciliary neuropeptidergic signaling dynamically regulates excitatory synapses in postnatal neocortical pyramidal neurons
2021
Primary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured rat neocortical pyramidal neurons and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to excitatory neuron cilia both
in vivo
and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.
Journal Article
Stability of neocortical synapses across sleep and wake states during the critical period in rats
2021
Sleep is important for brain plasticity, but its exact function remains mysterious. An influential but controversial idea is that a crucial function of sleep is to drive widespread downscaling of excitatory synaptic strengths. Here, we used real-time sleep classification, ex vivo measurements of postsynaptic strength, and in vivo optogenetic monitoring of thalamocortical synaptic efficacy to ask whether sleep and wake states can constitutively drive changes in synaptic strength within the neocortex of juvenile rats. We found that miniature excitatory postsynaptic current amplitudes onto L4 and L2/3 pyramidal neurons were stable across sleep- and wake-dense epochs in both primary visual (V1) and prefrontal cortex (PFC). Further, chronic monitoring of thalamocortical synaptic efficacy in V1 of freely behaving animals revealed stable responses across even prolonged periods of natural sleep and wake. Together, these data demonstrate that sleep does not drive widespread downscaling of synaptic strengths during the highly plastic critical period in juvenile animals. Whether this remarkable stability across sleep and wake generalizes to the fully mature nervous system remains to be seen.
Journal Article
Homeostatic plasticity in the developing nervous system
by
Nelson, Sacha B.
,
Turrigiano, Gina G.
in
Animal Genetics and Genomics
,
Animals
,
Behavioral Sciences
2004
Key Points
Neuronal activity often leads to changes in synaptic efficacy. However, such plasticity must be accompanied by homeostatic mechanisms that prevent neural activity from being driven towards runaway activity or quiescence. One potential homeostatic mechanism is the adjustment of synaptic excitability so that firing rates remain relatively constant.
At the neuromuscular junction, genetic alterations in synaptic transmission lead to compensatory changes. For example, a decrease in the number of synapses leads to a compensatory increase in quantal amplitude. Such mechanisms might normally adjust neuromuscular transmission during development to allow for changes in muscle growth or synaptic drive.
Similar phenomena have been seen in cultured networks of central neurons. Blocking spontaneous activity in cortical cultures results in hyperactivity when the block is lifted. One mechanism for such adjustment is the global regulation of excitatory synapses within a given neuron.
Synaptic strength can be measured by analysing miniature excitatory postsynaptic currents (mEPSCs), which result from spontaneous release of quanta of transmitter from individual vesicles. Chronic alterations in activity can increase or decrease the amplitude of mEPSCs. The amplitude seems to be scaled so that each synaptic strength is multiplied or divided by the same factor. Such multiplicative scaling should preserve the relative strengths of synapses.
Synaptic strength could be regulated through changes in postsynaptic receptor numbers, presynaptic transmitter release or reuptake, or the number of functional synapses. Evidence in favour of a change in receptor number includes the increase in mEPSC amplitude and in the response to glutamate application. It is unclear whether the homeostatic regulation of receptor numbers shares a signalling pathway with the insertion of receptors into the membrane by long-term potentiation (LTP).
Presynaptic changes in transmission are involved in homeostatic plasticity at the neuromuscular junction, but it is less clear whether they are involved in homeostasis in central neurons. In some circumstances, such as developing hippocampal cultures, changes in activity cause changes in the frequency of mEPSCs, as well as in their amplitude, indicating presynaptic alterations.
It is unclear how homeostatic plasticity is induced. Important questions include: whether homeostatic plasticity is cell-autonomous; how changes in activity are integrated and read out; and what intracellular signalling cascades generate global changes in synaptic strength.
The functioning of cortical networks requires a balance between excitatory and inhibitory inputs onto neurons. Homeostasis in recurrent networks seems to involve adjustments in the relative strengths of excitatory and inhibitory feedback. It seems that excitatory and inhibitory synapses are adjusted independently to maintain activity in the face of changes in drive.
Evidence that these mechanisms are important
in vivo
comes from the developing visual system. For example, during development, there is an inverse relationship between mEPSC frequency and amplitude, indicating that as synaptic drive increases, synaptic strength is reduced.
Activity has an important role in refining synaptic connectivity during development, in part through 'Hebbian' mechanisms such as long-term potentiation and long-term depression. However, Hebbian plasticity is probably insufficient to explain activity-dependent development because it tends to destabilize the activity of neural circuits. How can complex circuits maintain stable activity states in the face of such destabilizing forces? An idea that is emerging from recent work is that average neuronal activity levels are maintained by a set of homeostatic plasticity mechanisms that dynamically adjust synaptic strengths in the correct direction to promote stability. Here we discuss evidence from a number of systems that homeostatic synaptic plasticity is crucial for processes ranging from memory storage to activity-dependent development.
Journal Article
PSD-95 promotes the stabilization of young synaptic contacts
by
Taft, Christine E.
,
Turrigiano, Gina G.
in
Analysis of Variance
,
Animals
,
Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism
2014
Maintaining a population of stable synaptic connections is probably of critical importance for the preservation of memories and functional circuitry, but the molecular dynamics that underlie synapse stabilization is poorly understood. Here, we use simultaneous time-lapse imaging of post synaptic density-95 (PSD-95) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) to investigate the dynamics of protein composition at axodendritic (AD) contacts. Our data reveal that this composition is highly dynamic, with both proteins moving into and out of the same synapse independently, so that synapses cycle rapidly between states in which they are enriched for none, one or both proteins. We assessed how PSD-95 and CaMKII interact at stable and transient AD sites and found that both phospho-CaMKII and PSD-95 are present more often at stable than labile contacts. Finally, we found that synaptic contacts are more stable in older neurons, and this process can be mimicked in younger neurons by overexpression of PSD-95. Taken together, these data show that synaptic protein composition is highly variable over a time-scale of hours, and that PSD-95 is probably a key synaptic protein that promotes synapse stability.
Journal Article
Improved methods for marking active neuron populations
by
Brown, Timothy A.
,
Madangopal, Rajtarun
,
Trojanowski, Nicholas F.
in
14/35
,
14/63
,
631/1647/328/2235
2018
Marking functionally distinct neuronal ensembles with high spatiotemporal resolution is a key challenge in systems neuroscience. We recently introduced CaMPARI, an engineered fluorescent protein whose green-to-red photoconversion depends on simultaneous light exposure and elevated calcium, which enabled marking active neuronal populations with single-cell and subsecond resolution. However, CaMPARI (CaMPARI1) has several drawbacks, including background photoconversion in low calcium, slow kinetics and reduced fluorescence after chemical fixation. In this work, we develop CaMPARI2, an improved sensor with brighter green and red fluorescence, faster calcium unbinding kinetics and decreased photoconversion in low calcium conditions. We demonstrate the improved performance of CaMPARI2 in mammalian neurons and in vivo in larval zebrafish brain and mouse visual cortex. Additionally, we herein develop an immunohistochemical detection method for specific labeling of the photoconverted red form of CaMPARI. The anti-CaMPARI-red antibody provides strong labeling that is selective for photoconverted CaMPARI in activated neurons in rodent brain tissue.
Methods to directly label active neurons are still lacking. Here the authors develop CaMPARI2, a photoconvertible fluorescent protein sensor for neuronal activity with improved brightness and calcium binding kinetics, as well as an antibody to amplify the activated sensor signal in fixed samples.
Journal Article
Sensory experience inversely regulates feedforward and feedback excitation-inhibition ratio in rodent visual cortex
by
Richter, Leonidas MA
,
Gjorgjieva, Julijana
,
Cary, Brian A
in
Action Potentials
,
Animals
,
Binocular vision
2018
Brief (2-3d) monocular deprivation (MD) during the critical period induces a profound loss of responsiveness within binocular (V1b) and monocular (V1m) regions of rodent primary visual cortex. This has largely been ascribed to long-term depression (LTD) at thalamocortical synapses, while a contribution from intracortical inhibition has been controversial. Here we used optogenetics to isolate and measure feedforward thalamocortical and feedback intracortical excitation-inhibition (E-I) ratios following brief MD. Despite depression at thalamocortical synapses, thalamocortical E-I ratio was unaffected in V1b and shifted toward excitation in V1m, indicating that thalamocortical excitation was not effectively reduced. In contrast, feedback intracortical E-I ratio was shifted toward inhibition in V1m, and a computational model demonstrated that these opposing shifts produced an overall suppression of layer 4 excitability. Thus, feedforward and feedback E-I ratios can be independently tuned by visual experience, and enhanced feedback inhibition is the primary driving force behind loss of visual responsiveness.
Journal Article
Potentiation of cortical inhibition by visual deprivation
by
Nelson, Sacha B.
,
Turrigiano, Gina G.
,
Nataraj, Kiran
in
Adult and adolescent clinical studies
,
Animals
,
Biological and medical sciences
2006
An investigation of how cortical circuitry changes after a major manipulation of sensory input finds changes in cortical inhibitory circuitry. Out of the investigation also comes the description of a new form of synaptic plasticity between inhibitory interneurons and their targets.
The fine-tuning of circuits in sensory cortex requires sensory experience during an early critical period. Visual deprivation during the critical period has catastrophic effects on visual function, including loss of visual responsiveness to the deprived eye
1
,
2
,
3
, reduced visual acuity
4
, and loss of tuning to many stimulus characteristics
2
,
5
. These changes occur faster than the remodelling of thalamocortical axons
6
, but the intracortical plasticity mechanisms that underlie them are incompletely understood. Long-term depression of excitatory intracortical synapses has been proposed as a general candidate mechanism for the loss of cortical responsiveness after visual deprivation
7
,
8
. Alternatively (or in addition), the decreased ability of the deprived eye to activate cortical neurons could be due to enhanced intracortical inhibition
9
,
10
. Here we show that visual deprivation leaves excitatory connections in layer 4 (the primary input layer to cortex) unaffected, but markedly potentiates inhibitory feedback between fast-spiking basket cells (FS cells) and star pyramidal neurons (star pyramids). Further, a previously undescribed form of long-term potentiation of inhibition (LTPi) could be induced at synapses from FS cells to star pyramids, and was occluded by previous visual deprivation. These data suggest that potentiation of inhibition is a major cellular mechanism underlying the deprivation-induced degradation of visual function, and that this form of LTPi is important in fine-tuning cortical circuitry in response to visual experience.
Journal Article
Reduced Cortical Activity Due to a Shift in the Balance between Excitation and Inhibition in a Mouse Model of Rett Syndrome
by
Nelson, Sacha B.
,
Turrigiano, Gina G.
,
Jaenisch, Rudolf
in
Animals
,
Biological Sciences
,
Cell membranes
2005
Rett Syndrome (RTT) is a devastating neurological disorder that is caused by mutations in the MECP2 gene. Mecp2-mutant mice have been used as a model system to study the disease mechanism. Our previous work has suggested that MeCP2 malfunction in neurons is the primary cause of RTT in the mouse. However, the neurophysiological consequences of MeCP2 malfunction remain obscure. Using whole-cell patch-clamp recordings in cortical slices, we show that spontaneous activity of pyramidal neurons is reduced in Mecp2-mutant mice. This decrease is not caused by a change in the intrinsic properties of the recorded neurons. Instead, the balance between cortical excitation and inhibition is shifted to favor inhibition over excitation. Moreover, analysis of the miniature excitatory postsynaptic currents (mEPSCs)/inhibitory postsynaptic currents (mIPSCs) in the Mecp2-mutant cortex reveals a reduction in mEPSC amplitudes, without significant change in the average mIPSC amplitude or frequency. These findings provide the first detailed electrophysiological analysis of Mecp2-mutant mice and provide a framework for understanding the pathophysiology of the disease and tools for studying the underlying disease mechanisms.
Journal Article