Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10
result(s) for
"Van Berkel, Sander S"
Sort by:
A Polar Sulfamide Spacer Significantly Enhances the Manufacturability, Stability, and Therapeutic Index of Antibody–Drug Conjugates
by
Verkade, Jorge
,
Wijdeven, Marloes
,
Janssen, Brian
in
antibody–drug conjugates (ADCs)
,
Cancer
,
carbamoyl sulfamide
2018
Despite tremendous efforts in the field of targeted cancer therapy with antibody–drug conjugates (ADCs), attrition rates have been high. Historically, the priority in ADC development has been the selection of target, antibody, and toxin, with little focus on the nature of the linker. We show here that a short and polar sulfamide spacer (HydraSpace™, Oss, The Netherlands) positively impacts ADC properties in various ways: (a) efficiency of conjugation; (b) stability; and (c) therapeutic index. Different ADC formats are explored in terms of drug-to-antibody ratios (DAR2, DAR4) and we describe the generation of a DAR4 ADC by site-specific attachment of a bivalent linker–payload construct to a single conjugation site in the antibody. A head-to-head comparison of HydraSpace™-containing DAR4 ADCs to marketed drugs, derived from the same antibody and toxic payload components, indicated a significant improvement in both the efficacy and safety of several vivo models, corroborated by in-depth pharmacokinetic analysis. Taken together, HydraSpace™ technology based on a polar sulfamide spacer provides significant improvement in manufacturability, stability, and ADC design, and is a powerful platform to enable next-generation ADCs with enhanced therapeutic index.
Journal Article
Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition
by
Pettinati, Ilaria
,
Umland, Klaus-Daniel
,
Spencer, James
in
140/131
,
639/638/309/2144
,
Analytical Chemistry
2014
The use of β-lactam antibiotics is compromised by resistance, which is provided by β-lactamases belonging to both metallo (MBL)- and serine (SBL)-β-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in β-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including
19
F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.
The use of β-lactam antibiotics is severely threatened by metallo-β-lactamases (MBLs), which contribute to the development of resistance. Now, crystallographic and solution studies reveal that recently reported MBL inhibition with a rhodanine can be attributed to fragmentation and complex formation with the resulting thioenolate.
Journal Article
Diacetin, a reliable cue and private communication channel in a specialized pollination system
2015
The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can’t be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system.
Journal Article
Correction: Verkade, J.M.M.; et al. A Polar Sulfamide Spacer Significantly Enhances the Manufacturability, Stability, and Therapeutic Index of Antibody–Drug Conjugates. Antibodies 2018, 7, 12
The conflict of interest section of the published paper [1] has been updated as follows[...]
Journal Article
Rhodanine hydrolysis leads to potent thioenolate mediated metallo-beta-lactamase inhibition
by
Pettinati, Ilaria
,
Claridge, Timothy D W
,
Avison, Matthew B
in
Antibiotics
,
Chelation
,
Crystallization
2014
The use of [beta]-lactam antibiotics is compromised by resistance, which is provided by [beta]-lactamases belonging to both metallo (MBL)- and serine (SBL)-[beta]-lactamase subfamilies. The rhodanines are one of very few compound classes that inhibit penicillin-binding proteins (PBPs), SBLs and, as recently reported, MBLs. Here, we describe crystallographic analyses of the mechanism of inhibition of the clinically relevant VIM-2 MBL by a rhodanine, which reveal that the rhodanine ring undergoes hydrolysis to give a thioenolate. The thioenolate is found to bind via di-zinc chelation, mimicking the binding of intermediates in [beta]-lactam hydrolysis. Crystallization of VIM-2 in the presence of the intact rhodanine led to observation of a ternary complex of MBL, a thioenolate fragment and rhodanine. The crystallographic observations are supported by kinetic and biophysical studies, including (19)F NMR analyses, which reveal the rhodanine-derived thioenolate to be a potent broad-spectrum MBL inhibitor and a lead structure for the development of new types of clinically useful MBL inhibitors.
Journal Article
Targeted redox and energy cofactor metabolomics in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum
2017
Background:Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are prominent candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass to ethanol. The imbalance and suboptimal turnover rates of redox cofactors are currently hindering engineering efforts to achieve higher bioproductivity in both organisms. Measuring relevant intracellular cofactor concentrations will help understand redox state of these cofactors and help identify a strategy to overcome these limitations; however, metabolomic determinations of these labile metabolites have historically proved challenging.Results:Through our validations, we verified the handling and storage stability of these metabolites, and verified extraction matrices and extraction solvent were not suppressing mass spectrometry signals. We recovered adenylate energy charge ratios (a main quality indicator) above 0.82 for all extractions. NADH/NAD+ values of 0.26 and 0.04 for an adhE-deficient strain of C. thermocellumand its parent, respectively, reflect the expected shift to a more reduced redox potential when a species lacks the ability to re-oxidize NADH by synthesizing ethanol. This method failed to yield reliable results with C. bescii and poor-growing strains of T. saccharolyticum. Conclusions:Our validated protocols demonstrate and validate the extraction and analysis of selected redox and energy-related metabolites from two candidate consolidated bioprocessing biocatalysts, C. thermocellum and T. saccharolyticum. This development and validation highlights the important, but often neglected, need to optimize and validate metabolomic protocols when adapting them to new cell or tissue types.
Journal Article
Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T
by
Han, Cliff S.
,
Plugge, Caroline M.
,
Davids, Mark
in
Alicycliphilus denitrificans
,
Aromatic compounds
,
Aromatics
2013
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
Journal Article
Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601(T.)
by
Davids, Mark
,
Pieper, Dietmar H
,
Daligault, Hajnalka E
in
1st step
,
anaerobic benzene degradation
,
aromatic-compounds
2013
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601(T) have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601(T) is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601(T) are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601(T) and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601(T). Genes involved in cyclohexanol degradation were only found in strain K601(T). Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
Journal Article
Should hedge funds be regulated?
2008
It is nowadays hardly possible to open the
Financial Times
without noticing an article about hedge funds and the risks that they are believed to impose for their investors, their counterparties and even more significantly to the financial stability. What are these investment funds exactly and why is that much attention paid to this estimated two trillion dollar industry? What are these risks and are they really that threatening?
Journal Article
Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601.sup.T
2013
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601.sup.T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601.sup.T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601.sup.T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601.sup.T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601.sup.T . Genes involved in cyclohexanol degradation were only found in strain K601.sup.T . Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
Journal Article