Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
34,757
result(s) for
"Wallace, William A."
Sort by:
Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes
by
Scotton, Chris J
,
MacNee, William
,
Bradley, Mark
in
Animals
,
Apoptosis
,
Biomedical and Life Sciences
2011
Background
Large production volumes of zinc oxide nanoparticles (ZnONP) might be anticipated to pose risks, of accidental inhalation in occupational and even in consumer settings. Herein, we further investigated the pathological changes induced by ZnONP and their possible mechanism of action.
Methods
Two doses of ZnONP (50 and 150 cm
2
/rat) were intratracheally instilled into the lungs of rats with assessments made at 24 h, 1 wk, and 4 wks after instillation to evaluate dose- and time-course responses. Assessments included bronchoalveolar lavage (BAL) fluid analysis, histological analysis, transmission electron microscopy, and IgE and IgA measurement in the serum and BAL fluid. To evaluate the mechanism, alternative ZnONP, ZnONP-free bronchoalveolar lavage exudate, and dissolved Zn
2+
(92.5 μg/rat) were also instilled to rats. Acridine orange staining was utilized in macrophages in culture to evaluate the lysosomal membrane destabilization by NP.
Results
ZnONP induced eosinophilia, proliferation of airway epithelial cells, goblet cell hyperplasia, and pulmonary fibrosis. Bronchocentric interstitial pulmonary fibrosis at the chronic phase was associated with increased myofibroblast accumulation and transforming growth factor-β positivity. Serum IgE levels were up-regulated by ZnONP along with the eosinophilia whilst serum IgA levels were down-regulated by ZnONP. ZnONP are rapidly dissolved under acidic conditions (pH 4.5) whilst they remained intact around neutrality (pH 7.4). The instillation of dissolved Zn
2+
into rat lungs showed similar pathologies (eg., eosinophilia, bronchocentric interstitial fibrosis) as were elicited by ZnONP. Lysosomal stability was decreased and cell death resulted following treatment of macrophages with ZnONP
in vitro
.
Conclusions
We hypothesise that rapid, pH-dependent dissolution of ZnONP inside of phagosomes is the main cause of ZnONP-induced diverse progressive severe lung injuries.
Journal Article
Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study
by
MacNee, William
,
Brown, Simon
,
Poland, Craig A.
in
Abdomen
,
Abdominal Cavity - pathology
,
Animals
2008
Carbon nanotubes
1
have distinctive characteristics
2
, but their needle-like fibre shape has been compared to asbestos
3
, raising concerns that widespread use of carbon nanotubes may lead to mesothelioma, cancer of the lining of the lungs caused by exposure to asbestos
4
. Here we show that exposing the mesothelial lining of the body cavity of mice, as a surrogate for the mesothelial lining of the chest cavity, to long multiwalled carbon nanotubes results in asbestos-like, length-dependent, pathogenic behaviour. This includes inflammation and the formation of lesions known as granulomas. This is of considerable importance, because research and business communities continue to invest heavily in carbon nanotubes for a wide range of products
5
under the assumption that they are no more hazardous than graphite. Our results suggest the need for further research and great caution before introducing such products into the market if long-term harm is to be avoided.
A pilot study in a small number of mice shows that long multiwalled carbon nanotubes introduced into the abdominal cavity can cause asbestos-like pathogenic behaviour. The results suggest the need for further research and caution before introducing nanotube products into the market.
Journal Article
Monocytes Control Second-Phase Neutrophil Emigration in Established Lipopolysaccharide-induced Murine Lung Injury
by
Morris, Andrew Conway
,
Wallace, William A. H.
,
Hirani, Nik
in
Ablation
,
Acute Lung Injury - pathology
,
Acute Lung Injury - physiopathology
2012
Acute lung injury (ALI) is an important cause of morbidity and mortality, with no currently effective pharmacological therapies. Neutrophils have been specifically implicated in the pathogenesis of ALI, and there has been significant research into the mechanisms of early neutrophil recruitment, but those controlling the later phases of neutrophil emigration that characterize disease are poorly understood.
To determine the influence of peripheral blood monocytes (PBMs) in established ALI.
In a murine model of LPS-induced ALI, three separate models of conditional monocyte ablation were used: systemic liposomal clodronate (sLC), inducible depletion using CD11b diphtheria toxin receptor (CD11b DTR) transgenic mice, and antibody-dependent ablation of CCR2(hi) monocytes.
PBMs play a critical role in regulating neutrophil emigration in established murine LPS-induced lung injury. Gr1(hi) and Gr1(lo) PBM subpopulations contribute to this process. PBM depletion is associated with a significant reduction in measures of lung injury. The specificity of PBM depletion was demonstrated by replenishment studies in which the effects were reversed by systemic PBM infusion but not by systemic or local pulmonary infusion of mature macrophages or lymphocytes.
These results suggest that PBMs, or the mechanisms by which they influence pulmonary neutrophil emigration, could represent therapeutic targets in established ALI.
Journal Article
Large cell neuroendocrine lung carcinoma: consensus statement from The British Thoracic Oncology Group and the Association of Pulmonary Pathologists
by
Adderley, Helen
,
Wallace, William A.
,
Nicholson, Andrew G.
in
631/67/1612/1350
,
692/4028/67/1612
,
692/4028/67/1612/1350
2021
Over the past 10 years, lung cancer clinical and translational research has been characterised by exponential progress, exemplified by the introduction of molecularly targeted therapies, immunotherapy and chemo-immunotherapy combinations to stage III and IV non-small cell lung cancer. Along with squamous and small cell lung cancers, large cell neuroendocrine carcinoma (LCNEC) now represents an area of unmet need, particularly hampered by the lack of an encompassing pathological definition that can facilitate real-world and clinical trial progress. The steps we have proposed in this article represent an iterative and rational path forward towards clinical breakthroughs that can be modelled on success in other lung cancer pathologies.
Journal Article
Ferumoxytol-enhanced magnetic resonance imaging assessing inflammation after myocardial infarction
2017
ObjectivesMacrophages play a central role in the cellular inflammatory response to myocardial infarction (MI) and predict subsequent clinical outcomes. We aimed to assess temporal changes in cellular inflammation and tissue oedema in patients with acute MI using ultrasmallsuperparamagnetic particles of iron oxide (USPIO)-enhanced MRI.MethodsThirty-one patients were recruited following acute MI and followed up for 3 months with repeated T2 and USPIO-enhanced T2*-mapping MRI. Regions of interest were categorised into infarct, peri-infarct and remote myocardial zones, and compared with control tissues.ResultsFollowing a single dose, USPIO enhancement was detected in the myocardium until 24 hours (p<0.0001). Histology confirmed colocalisation of iron and macrophages within the infarcted, but not the non-infarcted, myocardium. Following repeated doses, USPIO uptake in the infarct zone peaked at days 2–3, and greater USPIO uptake was detected in the infarct zone compared with remote myocardium until days 10–16 (p<0.05). In contrast, T2-defined myocardial oedema peaked at days 3–9 and remained increased in the infarct zone throughout the 3-month follow-up period (p<0.01).ConclusionMyocardial macrophage activity can be detected using USPIO-enhanced MRI in the first 2 weeks following acute MI. This observed pattern of cellular inflammation is distinct, and provides complementary information to the more prolonged myocardial oedema detectable using T2 mapping. This imaging technique holds promise as a non-invasive method of assessing and monitoring myocardial cellular inflammation with potential application to diagnosis, risk stratification and assessment of novel anti-inflammatory therapeutic interventions.Trial registration numberTrial registration number: 14663. Registered on UK Clinical Research Network (http://public.ukcrn.org.uk) and also ClinicalTrials.gov (https://clinicaltrials.gov/ct2/show/NCT02319278?term=DECIFER&rank=2).
Journal Article
The IL-33:ST2 axis is unlikely to play a central fibrogenic role in idiopathic pulmonary fibrosis
by
Wallace, William A.
,
Porte, Joanne
,
Stephenson, Katherine E.
in
Analysis
,
Animal models
,
Animals
2023
Background
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease (ILD) with limited treatment options. Interleukin-33 (IL-33) is proposed to play a role in the development of IPF however the exclusive use of prophylactic dosing regimens means that the therapeutic benefit of targeting this cytokine in IPF is unclear.
Methods
IL-33 expression was assessed in ILD lung sections and human lung fibroblasts (HLFs) by immunohistochemistry and gene/protein expression and responses of HLFs to IL-33 stimulation measured by qPCR. In vivo, the fibrotic potential of IL-33:ST2 signalling was assessed using a murine model of bleomycin (BLM)-induced pulmonary fibrosis and therapeutic dosing with an ST2-Fc fusion protein. Lung and bronchoalveolar lavage fluid were collected for measurement of inflammatory and fibrotic endpoints. Human precision-cut lung slices (PCLS) were stimulated with transforming growth factor-β (TGFβ) or IL-33 and fibrotic readouts assessed.
Results
IL-33 was expressed by fibrotic fibroblasts in situ and was increased by TGFβ treatment in vitro. IL-33 treatment of HLFs did not induce
IL6
,
CXCL8
,
ACTA2
and
COL1A1
mRNA expression with these cells found to lack the IL-33 receptor ST2. Similarly, IL-33 stimulation had no effect on
ACTA2
,
COL1A1
,
FN1
and fibronectin expression by PCLS. Despite having effects on inflammation suggestive of target engagement, therapeutic dosing with the ST2-Fc fusion protein failed to reduce BLM-induced fibrosis measured by hydroxyproline content or Ashcroft score.
Conclusions
Together these findings suggest the IL-33:ST2 axis does not play a central fibrogenic role in the lungs with therapeutic blockade of this pathway unlikely to surpass the current standard of care for IPF.
Journal Article
Development of a histopathology scoring system for the pulmonary complications of organophosphorus insecticide poisoning in a pig model
2020
Organophosphorus (OP) insecticide self-poisoning causes over 100,000 global deaths annually. Around a third of patients are intubated and up to half of these can die. Post-mortem analysis of OP poisoned patients' lungs reveals consolidation, edema and hemorrhage, suggesting that direct or indirect lung damage may contribute to mortality. The lung injury caused by these formulated agricultural preparations is poorly characterised in humans, and a valid histopathology scoring system is needed in a relevant animal model to further investigate the disease and potential treatments. We conducted two pilot studies in anesthetized minipigs, which are commonly used for toxicological studies. In the first, pigs were given 2.5 mL/kg of either OP (n = 4) or saline (n = 2) by gavage and compared with positive controls (iv oleic acid n = 2). The second study simulated ingestion followed by gastric content aspiration: mixtures of OP (n = 3) or saline (n = 2) (0.63-0.71mL/kg) were placed in the stomach, and then small volumes of the gastric content were placed in the lung. At post-mortem examination, lungs were removed and inflation-fixed with 10% neutral buffered formalin. Samples (n = 62) were taken from cranial and caudal regions of both lungs. Two experienced lung histopathologists separately scored these samples using 8 proposed features of damage and their scores related (Kendall rank order). Two elements had small and inconsistent scores. When these were removed, the correlation increased from 0.74 to 0.78. Eight months later, a subset of samples (n = 35) was re-scored using the modified system by one of the previous histopathologists, with a correlation of 0.88. We have developed a reproducible pulmonary histopathology scoring system for OP poisoning in pigs which will assist future toxicological research and improve understanding and treatment of human OP poisoning.
Journal Article
Can dynamic imaging, using 18F-FDG PET/CT and CT perfusion differentiate between benign and malignant pulmonary nodules?
by
van Beek, Edwin J.R.
,
Wallace, William A.
,
Fletcher, Alison
in
Benign
,
Blood volume
,
Computed tomography
2021
The aim of the study was to derive and compare metabolic parameters relating to benign and malignant pulmonary nodules using dynamic 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) PET/CT, and nodule perfusion parameters derived through perfusion computed tomography (CT).Twenty patients with 21 pulmonary nodules incidentally detected on CT underwent a dynamic 18F-FDG PET/CT and a perfusion CT. The maximum standardized uptake value (SUVmax) was measured on conventional 18F-FDG PET/CT images. The influx constant (Ki) was calculated from the dynamic 18F-FDG PET/CT data using Patlak model. Arterial flow (AF) using the maximum slope model and blood volume (BV) using the Patlak plot method for each nodule were calculated from the perfusion CT data. All nodules were characterized as malignant or benign based on histopathology or 2 year follow up CT. All parameters were statistically compared between the two groups using the nonparametric Mann-Whitney test.Twelve malignant and 9 benign lung nodules were analysed (median size 20.1 mm, 9–29 mm) in 21 patients (male/female = 11/9; mean age ± SD: 65.3 ± 7.4; age range: 50–76 years). The average SUVmax values ± SD of the benign and malignant nodules were 2.2 ± 1.7 vs. 7.0 ± 4.5, respectively (p = 0.0148). Average Ki values in benign and malignant nodules were 0.0057 ± 0.0071 and 0.0230 ± 0.0155 min-1, respectively (p = 0.0311). Average BV for the benign and malignant nodules were 11.6857 ± 6.7347 and 28.3400 ± 15.9672 ml/100 ml, respectively (p = 0.0250). Average AF for the benign and malignant nodules were 74.4571 ± 89.0321 and 89.200 ± 49.8883 ml/100g/min, respectively (p = 0.1613).Dynamic 18F-FDG PET/CT and perfusion CT derived blood volume had similar capability to differentiate benign from malignant lung nodules.
Journal Article
A Randomized Controlled Trial of Peripheral Blood Mononuclear Cell Depletion in Experimental Human Lung Inflammation
by
Brittan, Mairi
,
Morris, Andrew Conway
,
Wallace, William A. H.
in
Adolescent
,
Adult
,
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
2013
Depletion of monocytes reduces LPS-induced lung inflammation in mice, suggesting monocytes as potential therapeutic targets in acute lung injury.
To investigate whether depletion of circulating blood monocytes has beneficial effects on markers of systemic and pulmonary inflammation in a human model of acute lung inflammation.
A total of 30 healthy volunteers were enrolled in a randomized controlled trial. Volunteers inhaled LPS at baseline, and were randomized to receive active mononuclear cell depletion by leukapheresis, or sham leukapheresis, in a double-blind fashion (15 volunteers per group). Serial blood counts were measured, bronchoalveolar lavage (BAL) was performed at 9 hours, and [(18)F]fluorodeoxyglucose positron emission tomography at 24 hours. The primary endpoint was the increment in circulating neutrophils at 8 hours.
As expected, inhalation of LPS induced neutrophilia and an up-regulation of inflammatory mediators in the blood and lungs of all volunteers. There was no significant difference between the depletion and sham groups in the mean increment in blood neutrophil count at 8 hours (6.16 × 10(9)/L and 6.15 × 10(9)/L, respectively; P = 1.00). Furthermore, there were no significant differences in BAL neutrophils or protein, positron emission tomography-derived measures of global lung inflammation, or cytokine levels in plasma or BAL supernatant between the study groups. No serious adverse events occurred, and no symptoms were significantly different between the groups.
These findings do not support a role for circulating human monocytes in the early recruitment of neutrophils during LPS-mediated acute lung inflammation in humans.
Journal Article
Intrapulmonary Autoantibodies to HSP72 Are Associated with Improved Outcomes in IPF
2019
Rationale. Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic interstitial lung disease, with high mortality. Currently, the aetiology and the pathology of IPF are poorly understood, with both innate and adaptive responses previously being implicated in the disease pathogenesis. Heat shock proteins (Hsp) and antibodies to Hsp in patients with IPF have been suggested as therapeutic targets and prognostic biomarkers, respectively. We aimed to study the relationship between the expression of Hsp72 and anti-Hsp72 antibodies in the BAL fluid and serum Aw disease progression in patients with IPF. Methods. A novel indirect ELISA to measure anti-Hsp72 IgG was developed and together with commercially available ELISAs used to detect Hsp72 IgG, Hsp72 IgGAM, and Hsp72 antigen, in the serum and BALf of a cohort of IPF (n=107) and other interstitial lung disease (ILD) patients (n=66). Immunohistochemistry was used to detect Hsp72 in lung tissue. The cytokine expression from monocyte-derived macrophages was measured by ELISA. Results. Anti-Hsp72 IgG was detectable in the serum and BALf of IPF (n=107) and other ILDs (n=66). Total immunoglobulin concentrations in the BALf showed an excessive adaptive response in IPF compared to other ILDs and healthy controls (p=0.026). Immunohistochemistry detection of C4d and Hsp72 showed that these antibodies may be targeting high expressing Hsp72 type II alveolar epithelial cells. However, detection of anti-Hsp72 antibodies in the BALf revealed that increasing concentrations were associated with improved patient survival (adjusted HR 0.62, 95% CI 0.45-0.85; p=0.003). In vitro experiments demonstrate that anti-Hsp72 complexes stimulate macrophages to secrete CXCL8 and CCL18. Conclusion. Our results indicate that intrapulmonary anti-Hsp72 antibodies are associated with improved outcomes in IPF. These may represent natural autoantibodies, and anti-Hsp72 IgM and IgA may provide a beneficial role in disease pathogenesis, though the mechanism of action for this has yet to be determined.
Journal Article