Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
472 result(s) for "Wareham, Nicholas J"
Sort by:
Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study
Physical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season. Participants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season. 103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5-7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen's d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small. It is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as exposures, confounding factors or outcome variables in future analyses.
Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults
Wrist-worn accelerometers are emerging as the most common instrument for measuring physical activity in large-scale epidemiological studies, though little is known about the relationship between wrist acceleration and physical activity energy expenditure (PAEE). 1695 UK adults wore two devices simultaneously for six days; a combined sensor and a wrist accelerometer. The combined sensor measured heart rate and trunk acceleration, which was combined with a treadmill test to yield a signal of individually-calibrated PAEE. Multi-level regression models were used to characterise the relationship between the two time-series, and their estimations were evaluated in an independent holdout sample. Finally, the relationship between PAEE and BMI was described separately for each source of PAEE estimate (wrist acceleration models and combined-sensing). Wrist acceleration explained 44-47% between-individual variance in PAEE, with RMSE between 34-39 J•min-1•kg-1. Estimations agreed well with PAEE in cross-validation (mean bias [95% limits of agreement]: 0.07 [-70.6:70.7]) but overestimated in women by 3% and underestimated in men by 4%. Estimation error was inversely related to age (-2.3 J•min-1•kg-1 per 10y) and BMI (-0.3 J•min-1•kg-1 per kg/m2). Associations with BMI were similar for all PAEE estimates (approximately -0.08 kg/m2 per J•min-1•kg-1). A strong relationship exists between wrist acceleration and PAEE in free-living adults, such that irrespective of the objective method of PAEE assessment, a strong inverse association between PAEE and BMI was observed.
Plasma metabolites to profile pathways in noncommunicable disease multimorbidity
Multimorbidity, the simultaneous presence of multiple chronic conditions, is an increasing global health problem and research into its determinants is of high priority. We used baseline untargeted plasma metabolomics profiling covering >1,000 metabolites as a comprehensive readout of human physiology to characterize pathways associated with and across 27 incident noncommunicable diseases (NCDs) assessed using electronic health record hospitalization and cancer registry data from over 11,000 participants (219,415 person years). We identified 420 metabolites shared between at least 2 NCDs, representing 65.5% of all 640 significant metabolite–disease associations. We integrated baseline data on over 50 diverse clinical risk factors and characteristics to identify actionable shared pathways represented by those metabolites. Our study highlights liver and kidney function, lipid and glucose metabolism, low-grade inflammation, surrogates of gut microbial diversity and specific health-related behaviors as antecedents of common NCD multimorbidity with potential for early prevention. We integrated results into an open-access webserver ( https://omicscience.org/apps/mwasdisease/ ) to facilitate future research and meta-analyses. Untargeted metabolomics profiling coupled with analysis of electronic health records in over 11,000 participants in the EPIC-Norfolk cohort reveals shared pathways that contribute to multimorbidity of noncommunicable diseases.
Plasma protein patterns as comprehensive indicators of health
Proteins are effector molecules that mediate the functions of genes1,2 and modulate comorbidities3–10, behaviors and drug treatments11. They represent an enormous potential resource for personalized, systemic and data-driven diagnosis, prevention, monitoring and treatment. However, the concept of using plasma proteins for individualized health assessment across many health conditions simultaneously has not been tested. Here, we show that plasma protein expression patterns strongly encode for multiple different health states, future disease risks and lifestyle behaviors. We developed and validated protein-phenotype models for 11 different health indicators: liver fat, kidney filtration, percentage body fat, visceral fat mass, lean body mass, cardiopulmonary fitness, physical activity, alcohol consumption, cigarette smoking, diabetes risk and primary cardiovascular event risk. The analyses were prospectively planned, documented and executed at scale on archived samples and clinical data, with a total of ~85 million protein measurements in 16,894 participants. Our proof-of-concept study demonstrates that protein expression patterns reliably encode for many different health issues, and that large-scale protein scanning12–16 coupled with machine learning is viable for the development and future simultaneous delivery of multiple measures of health. We anticipate that, with further validation and the addition of more protein-phenotype models, this approach could enable a single-source, individualized so-called liquid health check.
Synergistic insights into human health from aptamer- and antibody-based proteomic profiling
Affinity-based proteomics has enabled scalable quantification of thousands of protein targets in blood enhancing biomarker discovery, understanding of disease mechanisms, and genetic evaluation of drug targets in humans through protein quantitative trait loci (pQTLs). Here, we integrate two partly complementary techniques—the aptamer-based SomaScan ® v4 assay and the antibody-based Olink assays—to systematically assess phenotypic consequences of hundreds of pQTLs discovered for 871 protein targets across both platforms. We create a genetically anchored cross-platform proteome-phenome network comprising 547 protein–phenotype connections, 36.3% of which were only seen with one of the two platforms suggesting that both techniques capture distinct aspects of protein biology. We further highlight discordance of genetically predicted effect directions between assays, such as for PILRA and Alzheimer’s disease. Our results showcase the synergistic nature of these technologies to better understand and identify disease mechanisms and provide a benchmark for future cross-platform discoveries. Broad-capture affinity-based proteomic technologies inform how the readout of our genes affects human health. Here, the authors integrate aptamer- and antibody-based profiling to understand the mechanisms underlying gene-protein-disease associations.
The potential shared role of inflammation in insulin resistance and schizophrenia: A bidirectional two-sample mendelian randomization study
Insulin resistance predisposes to cardiometabolic disorders, which are commonly comorbid with schizophrenia and are key contributors to the significant excess mortality in schizophrenia. Mechanisms for the comorbidity remain unclear, but observational studies have implicated inflammation in both schizophrenia and cardiometabolic disorders separately. We aimed to examine whether there is genetic evidence that insulin resistance and 7 related cardiometabolic traits may be causally associated with schizophrenia, and whether evidence supports inflammation as a common mechanism for cardiometabolic disorders and schizophrenia. We used summary data from genome-wide association studies of mostly European adults from large consortia (Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) featuring up to 108,557 participants; Diabetes Genetics Replication And Meta-analysis (DIAGRAM) featuring up to 435,387 participants; Global Lipids Genetics Consortium (GLGC) featuring up to 173,082 participants; Genetic Investigation of Anthropometric Traits (GIANT) featuring up to 339,224 participants; Psychiatric Genomics Consortium (PGC) featuring up to 105,318 participants; and Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium featuring up to 204,402 participants). We conducted two-sample uni- and multivariable mendelian randomization (MR) analysis to test whether (i) 10 cardiometabolic traits (fasting insulin, high-density lipoprotein and triglycerides representing an insulin resistance phenotype, and 7 related cardiometabolic traits: low-density lipoprotein, fasting plasma glucose, glycated haemoglobin, leptin, body mass index, glucose tolerance, and type 2 diabetes) could be causally associated with schizophrenia; and (ii) inflammation could be a shared mechanism for these phenotypes. We conducted a detailed set of sensitivity analyses to test the assumptions for a valid MR analysis. We did not find statistically significant evidence in support of a causal relationship between cardiometabolic traits and schizophrenia, or vice versa. However, we report that a genetically predicted inflammation-related insulin resistance phenotype (raised fasting insulin (raised fasting insulin (Wald ratio OR = 2.95, 95% C.I, 1.38-6.34, Holm-Bonferroni corrected p-value (p) = 0.035) and lower high-density lipoprotein (Wald ratio OR = 0.55, 95% C.I., 0.36-0.84; p = 0.035)) was associated with schizophrenia. Evidence for these associations attenuated to the null in multivariable MR analyses after adjusting for C-reactive protein, an archetypal inflammatory marker: (fasting insulin Wald ratio OR = 1.02, 95% C.I, 0.37-2.78, p = 0.975), high-density lipoprotein (Wald ratio OR = 1.00, 95% C.I., 0.85-1.16; p = 0.849), suggesting that the associations could be fully explained by inflammation. One potential limitation of the study is that the full range of gene products from the genetic variants we used as proxies for the exposures is unknown, and so we are unable to comment on potential biological mechanisms of association other than inflammation, which may also be relevant. Our findings support a role for inflammation as a common cause for insulin resistance and schizophrenia, which may at least partly explain why the traits commonly co-occur in clinical practice. Inflammation and immune pathways may represent novel therapeutic targets for the prevention or treatment of schizophrenia and comorbid insulin resistance. Future work is needed to understand how inflammation may contribute to the risk of schizophrenia and insulin resistance.
Dietary Diversity, Diet Cost, and Incidence of Type 2 Diabetes in the United Kingdom: A Prospective Cohort Study
Diet is a key modifiable risk factor for multiple chronic conditions, including type 2 diabetes (T2D). Consuming a range of foods from the five major food groups is advocated as critical to healthy eating, but the association of diversity across major food groups with T2D is not clear and the relationship of within-food-group diversity is unknown. In addition, there is a growing price gap between more and less healthy foods, which may limit the uptake of varied diets. The current study had two aims: first, to examine the association of reported diversity of intake of food groups as well as their subtypes with risk of developing T2D, and second, to estimate the monetary cost associated with dietary diversity. A prospective study of 23,238 participants in the population-based EPIC-Norfolk cohort completed a baseline Food Frequency Questionnaire in 1993-1997 and were followed up for a median of 10 y. We derived a total diet diversity score and additional scores for diversity within each food group (dairy products, fruits, vegetables, meat and alternatives, and grains). We used multivariable Cox regression analyses for incident diabetes (892 new cases), and multivariable linear regression for diet cost. Greater total diet diversity was associated with 30% lower risk of developing T2D (Hazard ratio [HR] 0.70 [95% CI 0.51 to 0.95]) comparing diets comprising all five food groups to those with three or fewer, adjusting for confounders including obesity and socioeconomic status. In analyses of diversity within each food group, greater diversity in dairy products (HR 0.61 [0.45 to 0.81]), fruits (HR 0.69 [0.52 to 0.90]), and vegetables (HR 0.67 [0.52 to 0.87]) were each associated with lower incident diabetes. The cost of consuming a diet covering all 5 food groups was 18% higher (£4.15/day [4.14 to 4.16]) than one comprising three or fewer groups. Key limitations are the self-reported dietary data and the binary scoring approach whereby some food groups contained both healthy and less healthy food items. A diet characterized by regular consumption of all five food groups and by greater variety of dairy, fruit, and vegetable subtypes, appears important for a reduced risk of diabetes. However, such a diet is more expensive. Public health efforts to prevent diabetes should include food price policies to promote healthier, more varied diets.
Using natural experimental studies to guide public health action: turning the evidence-based medicine paradigm on its head
Despite smaller effect sizes, interventions delivered at population level to prevent non-communicable diseases generally have greater reach, impact and equity than those delivered to high-risk groups. Nevertheless, how to shift population behaviour patterns in this way remains one of the greatest uncertainties for research and policy. Evidence about behaviour change interventions that are easier to evaluate tends to overshadow that for population-wide and system-wide approaches that generate and sustain healthier behaviours. Population health interventions are often implemented as natural experiments, which makes their evaluation more complex and unpredictable than a typical randomised controlled trial (RCT). We discuss the growing importance of evaluating natural experiments and their distinctive contribution to the evidence for public health policy. We contrast the established evidence-based practice pathway, in which RCTs generate ‘definitive’ evidence for particular interventions, with a practice-based evidence pathway in which evaluation can help adjust the compass bearing of existing policy. We propose that intervention studies should focus on reducing critical uncertainties, that non-randomised study designs should be embraced rather than tolerated and that a more nuanced approach to appraising the utility of diverse types of evidence is required. The complex evidence needed to guide public health action is not necessarily the same as that which is needed to provide an unbiased effect size estimate. The practice-based evidence pathway is neither inferior nor merely the best available when all else fails. It is often the only way to generate meaningful evidence to address critical questions about investing in population health interventions.
Using human genetics to understand the disease impacts of testosterone in men and women
Testosterone supplementation is commonly used for its effects on sexual function, bone health and body composition, yet its effects on disease outcomes are unknown. To better understand this, we identified genetic determinants of testosterone levels and related sex hormone traits in 425,097 UK Biobank study participants. Using 2,571 genome-wide significant associations, we demonstrate that the genetic determinants of testosterone levels are substantially different between sexes and that genetically higher testosterone is harmful for metabolic diseases in women but beneficial in men. For example, a genetically determined 1 s.d. higher testosterone increases the risks of type 2 diabetes (odds ratio (OR) = 1.37 (95% confidence interval (95% CI): 1.22–1.53)) and polycystic ovary syndrome (OR = 1.51 (95% CI: 1.33–1.72)) in women, but reduces type 2 diabetes risk in men (OR = 0.86 (95% CI: 0.76–0.98)). We also show adverse effects of higher testosterone on breast and endometrial cancers in women and prostate cancer in men. Our findings provide insights into the disease impacts of testosterone and highlight the importance of sex-specific genetic analyses. Genetic analysis of data from over 400,000 participants in the UK Biobank Study shows that circulating testosterone levels have sex-specific implications for cardiometabolic diseases and cancer outcomes.
GDF15 mediates the effects of metformin on body weight and energy balance
Metformin, the world’s most prescribed anti-diabetic drug, is also effective in preventing type 2 diabetes in people at high risk 1 , 2 . More than 60% of this effect is attributable to the ability of metformin to lower body weight in a sustained manner 3 . The molecular mechanisms by which metformin lowers body weight are unknown. Here we show—in two independent randomized controlled clinical trials—that metformin increases circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15), which has been shown to reduce food intake and lower body weight through a brain-stem-restricted receptor. In wild-type mice, oral metformin increased circulating GDF15, with GDF15 expression increasing predominantly in the distal intestine and the kidney. Metformin prevented weight gain in response to a high-fat diet in wild-type mice but not in mice lacking GDF15 or its receptor GDNF family receptor α-like (GFRAL). In obese mice on a high-fat diet, the effects of metformin to reduce body weight were reversed by a GFRAL-antagonist antibody. Metformin had effects on both energy intake and energy expenditure that were dependent on GDF15, but retained its ability to lower circulating glucose levels in the absence of GDF15 activity. In summary, metformin elevates circulating levels of GDF15, which is necessary to obtain its beneficial effects on energy balance and body weight, major contributors to its action as a chemopreventive agent. In mouse studies, metformin treatment results in increased secretion of growth/differentiation factor 15 (GDF15), which prevents weight gain in response to high-fat diet, and GDF15-independent lowering of circulating blood glucose.