Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
6,861 result(s) for "Watanabe, K"
Sort by:
Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene
Magic-angle twisted bilayer graphene exhibits intriguing quantum phase transitions triggered by enhanced electron–electron interactions when its flat bands are partially filled. However, the phases themselves and their connection to the putative non-trivial topology of the flat bands are largely unexplored. Here we report transport measurements revealing a succession of doping-induced Lifshitz transitions that are accompanied by van Hove singularities, which facilitate the emergence of correlation-induced gaps and topologically non-trivial subbands. In the presence of a magnetic field, well-quantized Hall plateaus at a filling of 1,2,3 carriers per moiré cell reveal the subband topology and signal the emergence of Chern insulators with Chern numbers, C  = 3,2,1, respectively. Surprisingly, for magnetic fields exceeding 5 T we observe a van Hove singularity at a filling of 3.5, suggesting the possibility of a fractional Chern insulator. This van Hove singularity is accompanied by a crossover from low-temperature metallic, to high-temperature insulating behaviour, characteristic of entropically driven Pomeranchuk-like transitions. A magneto-transport study of twisted bilayer graphene near the magic angle further reveals its rich physics.
Cleaning interfaces in layered materials heterostructures
Heterostructures formed by stacking layered materials require atomically clean interfaces. However, contaminants are usually trapped between the layers, aggregating into randomly located blisters, incompatible with scalable fabrication processes. Here we report a process to remove blisters from fully formed heterostructures. Our method is over an order of magnitude faster than those previously reported and allows multiple interfaces to be cleaned simultaneously. We fabricate blister-free regions of graphene encapsulated in hexagonal boron nitride with an area ~ 5000 μm 2 , achieving mobilities up to 180,000 cm 2  V −1  s −1 at room temperature, and 1.8 × 10 6  cm 2  V −1  s −1 at 9 K. We also assemble heterostructures using graphene intentionally exposed to polymers and solvents. After cleaning, these samples reach similar mobilities. This demonstrates that exposure of graphene to process-related contaminants is compatible with the realization of high mobility samples, paving the way to the development of wafer-scale processes for the integration of layered materials in (opto)electronic devices. Atomically-clean interfaces are required in heterostructures. Here, authors report a method for fast and parallel removal of contaminants from fully-formed heterostructures, including sample intentionally exposed to polymers and solvent, achieving room temperature mobility over 180,000 cm 2 /Vs for graphene.
Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions
Nanoscale magnetic tunnel junctions play a pivotal role in magnetoresistive random access memories. Successful implementation depends on a simultaneous achievement of low switching current for the magnetization switching by spin transfer torque and high thermal stability, along with a continuous reduction of junction size. Perpendicular easy-axis CoFeB/MgO stacks possessing interfacial anisotropy have paved the way down to 20-nm scale, below which a new approach needs to be explored. Here we show magnetic tunnel junctions that satisfy the requirements at ultrafine scale by revisiting shape anisotropy, which is a classical part of magnetic anisotropy but has not been fully utilized in the current perpendicular systems. Magnetization switching solely driven by current is achieved for junctions smaller than 10 nm where sufficient thermal stability is provided by shape anisotropy without adopting new material systems. This work is expected to push forward the development of magnetic tunnel junctions toward single-digit nm-scale nano-magnetics/spintronics. The thermal stability impedes the application of nanoscale magnetic tunnel junctions in electronic and spintronics devices. Here the authors achieved current-induced magnetization switching in magnetic tunnel junctions smaller than 10 nm with sufficient thermal stability due to the shape anisotropy without adding new material systems.
Large linear-in-temperature resistivity in twisted bilayer graphene
Twisted bilayer graphene has recently emerged as a platform for hosting correlated phenomena. For twist angles near θ ≈ 1.1°, the low-energy electronic structure of twisted bilayer graphene features isolated bands with a flat dispersion1,2. Recent experiments have observed a variety of low-temperature phases that appear to be driven by electron interactions, including insulating states, superconductivity and magnetism3–6. Here we report electrical transport measurements up to room temperature for twist angles varying between 0.75° and 2°. We find that the resistivity, ρ, scales linearly with temperature, T, over a wide range of T before falling again owing to interband activation. The T-linear response is much larger than observed in monolayer graphene for all measured devices, and in particular increases by more than three orders of magnitude in the range where the flat band exists. Our results point to the dominant role of electron–phonon scattering in twisted bilayer graphene, with possible implications for the origin of the observed superconductivity.
Symmetry breaking in twisted double bilayer graphene
The flat bands that appear in some twisted van der Waals heterostructures provide a setting in which strong interactions between electrons lead to a variety of correlated phases1–20. In particular, heterostructures of twisted double bilayer graphene host correlated insulating states that can be tuned by both the twist angle and an external electric field11–14. Here, we report electrical transport measurements of twisted double bilayer graphene with which we examine the fundamental role of spontaneous symmetry breaking in its phase diagram. The metallic states near each of the correlated insulators exhibit abrupt drops in their resistivity as the temperature is lowered, along with associated nonlinear current–voltage characteristics. Despite qualitative similarities to superconductivity, the simultaneous reversals in the sign of the Hall coefficient point instead to spontaneous symmetry breaking as the origin of the abrupt resistivity drops, whereas Joule heating seems to underlie the nonlinear transport. Our results suggest that similar mechanisms are probably relevant across a broader class of semiconducting flat band van der Waals heterostructures.Transport measurements show that spontaneous symmetry breaking plays a crucial role in the correlated insulating and metallic states in twisted double bilayer graphene.
Tuning superconductivity in twisted bilayer graphene
Materials with flat electronic bands often exhibit exotic quantum phenomena owing to strong correlations. An isolated low-energy flat band can be induced in bilayer graphene by simply rotating the layers by 1.1°, resulting in the appearance of gate-tunable superconducting and correlated insulating phases. In this study, we demonstrate that in addition to the twist angle, the interlayer coupling can be varied to precisely tune these phases. We induce superconductivity at a twist angle larger than 1.1°—in which correlated phases are otherwise absent—by varying the interlayer spacing with hydrostatic pressure. Our low-disorder devices reveal details about the superconducting phase diagram and its relationship to the nearby insulator. Our results demonstrate twisted bilayer graphene to be a distinctively tunable platform for exploring correlated states.
Maximized electron interactions at the magic angle in twisted bilayer graphene
The electronic properties of heterostructures of atomically thin van der Waals crystals can be modified substantially by moiré superlattice potentials from an interlayer twist between crystals 1 , 2 . Moiré tuning of the band structure has led to the recent discovery of superconductivity 3 , 4 and correlated insulating phases 5 in twisted bilayer graphene (TBG) near the ‘magic angle’ of twist of about 1.1 degrees, with a phase diagram reminiscent of high-transition-temperature superconductors. Here we directly map the atomic-scale structural and electronic properties of TBG near the magic angle using scanning tunnelling microscopy and spectroscopy. We observe two distinct van Hove singularities (VHSs) in the local density of states around the magic angle, with an energy separation of 57 millielectronvolts that drops to 40 millielectronvolts with high electron/hole doping. Unexpectedly, the VHS energy separation continues to decrease with decreasing twist angle, with a lowest value of 7 to 13 millielectronvolts at a magic angle of 0.79 degrees. More crucial to the correlated behaviour of this material, we find that at the magic angle, the ratio of the Coulomb interaction to the bandwidth of each individual VHS ( U / t ) is maximized, which is optimal for electronic Cooper pairing mechanisms. When doped near the half-moiré-band filling, a correlation-induced gap splits the conduction VHS with a maximum size of 6.5 millielectronvolts at 1.15 degrees, dropping to 4 millielectronvolts at 0.79 degrees. We capture the doping-dependent and angle-dependent spectroscopy results using a Hartree–Fock model, which allows us to extract the on-site and nearest-neighbour Coulomb interactions. This analysis yields a U / t of order unity indicating that magic-angle TBG is moderately correlated. In addition, scanning tunnelling spectroscopy maps reveal an energy- and doping-dependent three-fold rotational-symmetry breaking of the local density of states in TBG, with the strongest symmetry breaking near the Fermi level and further enhanced when doped to the correlated gap regime. This indicates the presence of a strong electronic nematic susceptibility or even nematic order in TBG in regions of the phase diagram where superconductivity is observed. Scanning tunnelling spectroscopy is used to map the atomic-scale electronic structure of magic-angle twisted bilayer graphene, finding multiple signatures of electron correlations and thus providing insight into the sought-after mechanism behind superconductivity in graphene.
Photo-thermionic effect in vertical graphene heterostructures
Finding alternative optoelectronic mechanisms that overcome the limitations of conventional semiconductor devices is paramount for detecting and harvesting low-energy photons. A highly promising approach is to drive a current from the thermal energy added to the free-electron bath as a result of light absorption. Successful implementation of this strategy requires a broadband absorber where carriers interact among themselves more strongly than with phonons, as well as energy-selective contacts to extract the excess electronic heat. Here we show that graphene-WSe 2 -graphene heterostructure devices offer this possibility through the photo-thermionic effect: the absorbed photon energy in graphene is efficiently transferred to the electron bath leading to a thermalized hot carrier distribution. Carriers with energy higher than the Schottky barrier between graphene and WSe 2 can be emitted over the barrier, thus creating photocurrent. We experimentally demonstrate that the photo-thermionic effect enables detection of sub-bandgap photons, while being size-scalable, electrically tunable, broadband and ultrafast. The detection of low-energy photons may be enabled by devices that make use of the excess thermal energy from photoexcited carriers as a result of light absorption. Here the authors demonstrate a vertical graphene-WSe 2 -graphene heterostructure that takes advantage of the photo-thermionic effect.
Spin relaxation in a single-electron graphene quantum dot
The relaxation time of a single-electron spin is an important parameter for solid-state spin qubits, as it directly limits the lifetime of the encoded information. Thanks to the low spin-orbit interaction and low hyperfine coupling, graphene and bilayer graphene (BLG) have long been considered promising platforms for spin qubits. Only recently, it has become possible to control single-electrons in BLG quantum dots (QDs) and to understand their spin-valley texture, while the relaxation dynamics have remained mostly unexplored. Here, we report spin relaxation times ( T 1 ) of single-electron states in BLG QDs. Using pulsed-gate spectroscopy, we extract relaxation times exceeding 200 μ s at a magnetic field of 1.9 T. The T 1 values show a strong dependence on the spin splitting, promising even longer T 1 at lower magnetic fields, where our measurements are limited by the signal-to-noise ratio. The relaxation times are more than two orders of magnitude larger than those previously reported for carbon-based QDs, suggesting that graphene is a potentially promising host material for scalable spin qubits. Graphene has long been considered to be a promising host for spin qubits, however a demonstration of long spin relaxation times for a potential qubit has been lacking. Here, the authors report the electrical measurement of the single-electron spin relaxation time exceeding 200  μ s in a bilayer graphene quantum dot.
Kinetic magnetism in triangular moiré materials
Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically 1 – 7 , but an experimental demonstration 8 in an extended system has been missing. Here we investigate MoSe 2 /WS 2 van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance 9 , 10 , we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism. Minimization of kinetic energy leads to ferromagnetic correlations between itinerant electrons in MoSe 2 /WS 2 moiré lattices even in the absence of exchange interactions.