Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Weingartner, Ernest"
Sort by:
Estimating Mycobacterium tuberculosis transmission in a South African clinic: Spatiotemporal model based on person movements
by
Egger, Matthias
,
Fenner, Lukas
,
Zürcher, Kathrin
in
Airborne infection
,
Biology and Life Sciences
,
Computational Biology
2025
The risk of Mycobacterium tuberculosis (Mtb) transmission can be high in crowded clinics. We developed a spatiotemporal model of airborne Mtb transmission based on the Wells-Riley equation. We collected environmental, clinical and person-tracking data in a South African clinic during COVID-19, when community or surgical masks were compulsory and ventilation was increased. We matched person movements with clinical records to identify the spatiotemporal location of infectious TB patients. We modeled the concentration of infectious doses (quanta) and estimated the individual risk of infection. Over five days, video sensors tracked 1,438 clinic attendees. CO 2 levels were low (median 431 ppm, IQR 406 ppm–458 ppm); the quanta concentration was higher in the morning than in the afternoon, and highest in the waiting room. The estimated risk of infection per clinic attendee was 0.05% (80%-credible interval (CrI) 0.01%–0.06%). It increased with the number of close contacts with infectious patients and the time spent in the clinic, and was 1.3-fold (95%-CrI 1.2–1.4) higher in scenarios without mask use and 2.1-fold (95%-CrI 0.9–5.0) higher with pre-pandemic ventilation rates, emphasizing the importance of ventilation. Spatiotemporal modeling can identify high-risk areas and evaluate the impact of infection control measures in clinics.
Journal Article
Evidence for the role of organics in aerosol particle formation under atmospheric conditions
by
Duplissy, Jonathan
,
Prevot, Andre S.H
,
Metzger, Axel
in
Aerosols
,
Aerosols - chemistry
,
Air Pollutants - chemistry
2010
New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H₂SO₄ and organic condensable species. Nucleation occurs at H₂SO₄ concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H₂SO₄ and an organic molecule. This suggests that only one H₂SO₄ molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.
Journal Article
A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity
2020
The uptake of water by atmospheric aerosols has a pronounced effect on particle light scattering properties, which in turn are strongly dependent on the ambient relative humidity (RH). Earth system models need to account for the aerosol water uptake and its influence on light scattering in order to properly capture the overall radiative effects of aerosols. Here we present a comprehensive model–measurement evaluation of the particle light scattering enhancement factor f(RH), defined as the particle light scattering coefficient at elevated RH (here set to 85 %) divided by its dry value. The comparison uses simulations from 10 Earth system models and a global dataset of surface-based in situ measurements. In general, we find a large diversity in the magnitude of predicted f(RH) amongst the different models, which can not be explained by the site types. Based on our evaluation of sea salt scattering enhancement and simulated organic mass fraction, there is a strong indication that differences in the model parameterizations of hygroscopicity and model chemistry are driving at least some of the observed diversity in simulated f(RH). Additionally, a key point is that defining dry conditions is difficult from an observational point of view and, depending on the aerosol, may influence the measured f(RH). The definition of dry also impacts our model evaluation, because several models exhibit significant water uptake between RH = 0 % and 40 %. The multisite average ratio between model outputs and measurements is 1.64 when RH = 0 % is assumed as the model dry RH and 1.16 when RH = 40 % is the model dry RH value. The overestimation by the models is believed to originate from the hygroscopicity parameterizations at the lower RH range which may not implement all phenomena taking place (i.e., not fully dried particles and hysteresis effects). This will be particularly relevant when a location is dominated by a deliquescent aerosol such as sea salt. Our results emphasize the need to consider the measurement conditions in such comparisons and recognize that measurements referred to as dry may not be dry in model terms. Recommendations for future model–measurement evaluation and model improvements are provided.
Journal Article
Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol
by
Poulain, Laurent
,
Wiedensohler, Alfred
,
Zieger, Paul
in
aerosol mass spectrometer
,
aerosol particle light scattering
,
Aerosols
2014
The influence of aerosol water uptake on the aerosol particle light scattering was examined at the regional continental research site Melpitz, Germany. The scattering enhancement factor f(RH), defined as the aerosol particle scattering coefficient at a certain relative humidity (RH) divided by its dry value, was measured using a humidified nephelometer. The chemical composition and other microphysical properties were measured in parallel. f(RH) showed a strong variation, e.g. with values between 1.2 and 3.6 at RH=85% and λ=550 nm. The chemical composition was found to be the main factor determining the magnitude of f(RH), since the magnitude of f(RH) clearly correlated with the inorganic mass fraction measured by an aerosol mass spectrometer (AMS). Hysteresis within the recorded humidograms was observed and explained by long-range transported sea salt. A closure study using Mie theory showed the consistency of the measured parameters.
Journal Article
A single-beam photothermal interferometer for in situ measurements of aerosol light absorption
by
Röhrbein, Jannis
,
Drinovec, Luka
,
Močnik, Griša
in
Absorption
,
Absorption cross sections
,
Aerosol absorption
2020
We have developed a novel single-beam photothermal interferometer and present here its application for the measurement of aerosol light absorption. The use of only a single laser beam allows for a compact optical set-up and significantly easier alignment compared to standard
dual-beam photothermal interferometers, making it ideal for field measurements. Due to a unique configuration of the reference interferometer arm, light absorption by aerosols can be determined directly – even in the presence of light-absorbing gases. The instrument can be calibrated directly with light-absorbing gases, such as NO2, and can be used to calibrate other light absorption instruments. The detection limits (1σ) for absorption for 10 and 60 s averaging times were determined to be 14.6 and 7.4 Mm−1, respectively, which for a mass absorption cross section of 10 m2 g−1 leads to equivalent black carbon concentration detection limits of 1460 and 740 ng m−3, respectively. The detection limit could be reduced further by improvements to the isolation of the instrument and the signal detection and processing schemes employed.
Journal Article
A global view on the effect of water uptake on aerosol particle light scattering
2019
A reference dataset of multi-wavelength particle light scattering and hemispheric backscattering coefficients for different relative humidities (RH) between RH = 30 and 95% and wavelengths between λ = 450 nm and 700 nm is described in this work. Tandem-humidified nephelometer measurements from 26 ground-based sites around the globe, covering multiple aerosol types, have been re-analysed and harmonized into a single dataset. The dataset includes multi-annual measurements from long-term monitoring sites as well as short-term field campaign data. The result is a unique collection of RH-dependent aerosol light scattering properties, presented as a function of size cut. This dataset is important for climate and atmospheric model-measurement inter-comparisons, as a means to improve model performance, and may be useful for satellite and remote sensing evaluation using surface-based, in-situ measurements.Design Type(s)spectral data collection and processing objective • data integration objective • time series designMeasurement Type(s)light scatteringTechnology Type(s)NephelometryFactor Type(s)geographic location • instrument • Environment • temporal_intervalSample Characteristic(s)United States of America • climate system • Canada • The Netherlands • Greece • Germany • Portuguese Republic • South Korea • China • United Kingdom • Finland • Switzerland • Maldives Archipelago • Brazil • Republic of Ireland • Niger • India • Kingdom of Spain • Kingdom of NorwayMachine-accessible metadata file describing the reported data (ISA-Tab format)
Journal Article
Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei
2010
Aerosol particles can modify cloud properties by acting as cloud condensation nuclei (CCN). Predicting CCN properties is still a challenge and not properly incorporated in current climate models. Atmospheric particle number size distributions, hygroscopic growth factors, and polydisperse CCN number concentrations were measured at the remote subarctic Stordalen mire, 200 km north of the Arctic Circle in northern Sweden. The CCN number concentration was highly variable, largely driven by variations in the total number of sufficiently large particles, though the variability of chemical composition was increasingly important for decreasing supersaturation. The hygroscopicity of particles measured by a hygroscopicity tandem differential mobility analyzer (HTDMA) was in agreement with large critical diameters observed for CCN activation (κ ≈ 0.07–0.21 for D = 50–200 nm). Size distribution and time‐ and size‐resolved HTDMA data were used to predict CCN number concentrations. Agreement of predictions with measured CCN within ±11% was achieved using parameterized Köhler theory and assuming a surface tension of pure water. The sensitivity of CCN predictions to various simplifying assumptions was further explored: We found that (1) ignoring particle mixing state did not affect CCN predictions, (2) averaging the HTDMA data in time with retaining the size dependence did not introduce a substantial bias, while individual predictions became more uncertain, and (3) predictions involving the hygroscopicity parameter recommended in literature for continental sites (κ ≈ 0.3 ± 0.1) resulted in a significant prediction bias. Future modeling studies should therefore at least aim at using averaged, size‐resolved, site‐specific hygroscopicity or chemical composition data for predictions of CCN number concentrations.
Journal Article
Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland
by
Hammer, Emanuel
,
Bukowiecki, Nicolas
,
Nenes, Athanasios
in
Aerosol concentrations
,
Aerosol particles
,
Aerosols
2016
A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles.
Journal Article
Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland
by
Coe, Hugh
,
Choularton, Tom
,
Crosier, Jonathan
in
cloud phase
,
Earth sciences
,
Earth, ocean, space
2009
This paper studies the influence of particle chemical composition on the phase of cold clouds observed during two intensive measurement periods of the Cloud and Aerosol Characterization Experiments conducted at the Jungfraujoch site (Switzerland). Cloud droplets and particles were sampled simultaneously using a suite of optical, chemical, and microphysical instruments connected downstream of a total inlet and an interstitial inlet. Sulphate and organic matter were the most abundant semivolatile species observed in the particulate phase during both campaigns. Periods of relatively large loadings of organic and inorganic species were also accompanied by enhancement of light‐absorbing aerosol concentrations. The cloud phase exhibited sharp transitions, alternating between highly glaciated and liquid phases over a few seconds within the same cloud event. It was also observed that conditions of elevated pollution were accompanied by an increase in occurrence of glaciated periods. The 24‐hour cloud event investigated on the 8 March 2004 was in the mixed phase for approximately 260 minutes, in the glaciated phase for approximately 64 minutes and in the liquid phase for the remainder of the time. On the 23 March 2004, another 24‐hour cloud event was captured in which the number of minutes as mixed‐phase and glaciated cloud were 196 and 31, respectively. The loadings of BC as well as organic and inorganic species were larger during the first period. The investigation was extended for the whole data set, and a statistical analysis was performed across the chemical data measured off the total inlet. The amount of organic and inorganic material found in liquid and glaciated clouds was statistically different, with organic and inorganic material as well as BC being enriched in glaciated conditions. The case studies and the statistical analysis together suggest an influence of the particle chemical composition on the cloud phase, which may be important in perturbing cloud microphysics in polluted regions.
Journal Article
The role of low-volatility organic compounds in initial particle growth in the atmosphere
by
Ehrhart, Sebastian
,
Schobesberger, Siegfried
,
Curtius, Joachim
in
639/766/530/951
,
704/106/35/824
,
704/172/169/824
2016
The growth of nucleated organic particles has been investigated in controlled laboratory experiments under atmospheric conditions; initial growth is driven by organic vapours of extremely low volatility, and accelerated by more abundant vapours of slightly higher volatility, leading to markedly different modelled concentrations of atmospheric cloud condensation nuclei when this growth mechanism is taken into account.
Aerosol particle formation in clean air
The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s
Nature
point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby
et al
. show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl
et al
. examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility.
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday
1
. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres
2
,
3
. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles
4
, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth
5
,
6
, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer
7
,
8
,
9
,
10
. Although recent studies
11
,
12
,
13
predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon
2
, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)
2
,
14
, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown
15
that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10
−4.5
micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10
−4.5
to 10
−0.5
micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Journal Article