Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
39 result(s) for "Wilby, Andrew"
Sort by:
Multiple targeted grassland restoration interventions enhance ecosystem service multifunctionality
The need to combat widespread degradation of grassland ecosystem services makes grassland restoration a global sustainability priority. However, simultaneously enhancing multiple ecosystem services (i.e. ecosystem service multifunctionality) is a major challenge for grassland restoration due to trade-offs among services. We use a long-term multifactor grassland restoration experiment established in 1989 on agriculturally improved, species-poor grassland in northern England, to assess how increasing the number of restoration treatments, including addition of manure, inorganic fertiliser, a seed mixture, and promotion of a nitrogen-fixing legume ( Trifolium pratense ), affects ecosystem service multifunctionality, based on 26 ecosystem service indicators measured between 2011 and 2014. We find that single interventions usually lead to trade-offs among services and thus have few positive effects on ecosystem service multifunctionality. However, ecosystem service multifunctionality increases with the number of restoration interventions, as trade-offs are reduced. Our findings highlight the significant potential for combined use of multiple targeted interventions to aid the restoration of ecosystem service multifunctionality in degraded grasslands, and potentially, other ecosystems. Widespread grassland degradation poses major societal and environmental challenges. Here, the authors propose multiple targeted interventions as a crucial strategy for simultaneously enhancing grassland ecosystem services and improving their equitability.
Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards
Flower strips are commonly recommended to boost biodiversity and multiple ecosystem services (e.g., pollination and pest control) on farmland. However, significant knowledge gaps remain regards the extent to which they deliver on these aims. Here, we tested the efficacy of flower strips that targeted different subsets of beneficial arthropods (pollinators and natural enemies) and their ecosystem services in cider apple orchards. Treatments included mixes that specifically targeted: (1) pollinators (‘concealed-nectar plants’); (2) natural enemies (‘open-nectar plants’); or (3) both groups concurrently (i.e., ‘multi-functional’ mix). Flower strips were established in alleyways of four orchards and compared to control alleyways (no flowers). Pollinator (e.g., bees) and natural enemy (e.g., parasitoid wasps, predatory flies and beetles) visitation to flower strips, alongside measures of pest control (aphid colony densities, sentinel prey predation), and fruit production, were monitored in orchards over two consecutive growing seasons. Targeted flower strips attracted either pollinators or natural enemies, whereas mixed flower strips attracted both groups in similar abundance to targeted mixes. Natural enemy densities on apple trees were higher in plots containing open-nectar plants compared to other treatments, but effects were stronger for non-aphidophagous taxa. Predation of sentinel prey was enhanced in all flowering plots compared to controls but pest aphid densities and fruit yield were unaffected by flower strips. We conclude that ‘multi-functional’ flower strips that contain flowering plant species with opposing floral traits can provide nectar and pollen for both pollinators and natural enemies, but further work is required to understand their potential for improving pest control services and yield in cider apple orchards.
Stability lies in flowers: Plant diversification mediating shifts in arthropod food webs
Arthropod community composition in agricultural landscapes is dependent on habitat characteristics, such as plant composition, landscape homogeneity and the presence of key resources, which are usually absent in monocultures. Manipulating agroecosystems through the insertion of in-field floral resources is a useful technique to reduce the deleterious effects of habitat simplification. Food web analysis can clarify how the community reacts to the presence of floral resources which favour ecosystem services such as biological control of pest species. Here, we reported quantitative and qualitative alterations in arthropod food web complexity due to the presence of floral resources from the Mexican marigold (Tagetes erecta L.) in a field scale lettuce community network. The presence of marigold flowers in the field successfully increased richness, body size, and the numerical and biomass abundance of natural enemies in the lettuce arthropod community, which affected the number of links, vulnerability, generality, omnivory rate and food chain length in the community, which are key factors for the stability of relationships between species. Our results reinforce the notion that diversification through insertion of floral resources may assist in preventing pest outbreaks in agroecosystems. This community approach to arthropod interactions in agricultural landscapes can be used in the future to predict the effect of different management practices in the food web to contribute with a more sustainable management of arthropod pest species.
Herbivore species richness, composition and community structure mediate predator richness effects and top-down control of herbivore biomass
Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.
Associational resistance or susceptibility: the indirect interaction between chemically-defended and non-defended herbivore prey via a shared predator
Many organisms possess chemical defences against their natural enemies, which render them unpalatable or toxic when attacked or consumed. These chemically-defended organisms commonly occur in communities with non- or less-defended prey, leading to indirect interactions between prey species, mediated by natural enemies. Although the importance of enemy-mediated indirect interactions have been well documented (e.g. apparent competition), how the presence of prey chemical defences may affect predation of non-defended prey in terrestrial communities remains unclear. Here, an experimental approach was used to study the predator-mediated indirect interaction between a chemically-defended and non-defended pest aphid species. Using laboratory-based mesocosms, aphid community composition was manipulated to include chemically-defended (CD) aphids Brevicoryne brassicae, non-defended (ND) aphids Myzus persicae or a mixed assemblage of both species, on Brassica oleracea cabbage plants, in the presence or absence of a shared predator (Chrysoperla carnea larvae). Aphid population growth rates, aphid distributions on host plants and predator growth rates were measured. In single-species treatments, C. carnea reduced M. persicae population growth rate, but had no significant impact on B. brassicae population growth rate, suggesting B. brassicae chemical defences are effective against C. carnea. Chrysoperla carnea had no significant impact on either aphid species population growth rate in mixed-species treatments. Myzus persicae (ND) therefore experienced reduced predation in the presence of B. brassicae (CD) through a predator-mediated indirect effect. Moreover, predator growth rates were significantly higher in the M. persicae- only treatments than in either the B. brassicae only or mixed-species treatments, suggesting predation was impaired in the presence of B. brassicae (CD). A trait-mediated indirect interaction is proposed, consistent with associational resistance, in which the predator, upon incidental consumption of chemically-defended aphids is deterred from feeding, releasing non-defended aphids from predatory control.
Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services
Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.
Plant Species Composition Alters the Sign and Strength of an Emergent Multi-Predator Effect by Modifying Predator Foraging Behaviour
The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture) on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by plant species composition, mediated, in this case, by the provision of extra-floral nectar by one of the plant species.
The impact of field margins on biological pest control: a meta-analysis
Floral field margins are known to benefit invertebrate species diversity and abundance within agricultural landscapes, but variation in success limits widespread uptake. Understanding how variation within floral field margins can affect certain entomological groupings is lacking but would allow for a more individualised design of margins to enhance biological control. This meta-analysis aims to answer the question; do floral field margins benefit biological pest control over grassy field margins? We found that floral margins significantly benefit the natural enemy community and biological control services, relative to non-floral grass margins. We confirm that field margin type is linked to higher abundance and diversity of natural enemies, lower numbers of herbivorous invertebrate pests, and reduced crop damage. We consider whether specific characterisations of natural enemies and pest communities vary between these margin types, finding key differences in the abundances of aerial and epigeal enemies, the diversity of parasitoid and predatory enemies and pest abundances found in naturally regenerating and sown floral field margins. The finding here cements the implementation of floral field margins as a legitimate control method for crop pests in the face of losses due to pesticides and highlights design and management considerations for the success of floral margins.
Population synchrony indicates functional connectivity in a threatened sedentary butterfly
Dispersal is a key influence on species’ persistence, particularly in the context of habitat fragmentation and environmental change. Previously, residual population synchrony has been demonstrated to be an effective proxy for dispersal in mobile butterflies (Powney et al. 2012). Here, we highlight the utility and limitations of population synchrony as an indicator of functional connectivity and persistence, at a range of spatial scales, in a specialist, sedentary butterfly. While at the local scale, population synchrony is likely indicative of dispersal in the pearl-bordered fritillary, Boloria euphrosyne, over larger scales, habitat is likely to influence population dynamics. Although declines in local-scale synchrony conformed to typical movement in this species, synchrony showed no significant trend with distance when studied at larger (between-site) scales. By focusing on specific site comparisons, we draw the conclusion that heterogeneity in habitat successional stage drives asynchrony between sites at larger distances and is, therefore, likely to be a more important driver of population dynamics over large distances than dispersal. Within-site assessments of synchrony highlight differences in dispersal based on habitat type, with movement shown to be most inhibited between transect sections with contrasting habitat permeability. While synchrony has implications for metapopulation stability and extinction risk, no significant difference was found in average site synchrony between sites that had gone extinct during the study period and those remaining occupied. We demonstrate that population synchrony may be used to assess local-scale movement between sedentary populations, as well as to understand barriers to dispersal and guide conservation management.