Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Wildner, Hendrik"
Sort by:
Neuron-specific spinal cord translatomes reveal a neuropeptide code for mouse dorsal horn excitatory neurons
The spinal dorsal horn harbors a sophisticated and heterogeneous network of excitatory and inhibitory neurons that process peripheral signals encoding different sensory modalities. Although it has long been recognized that this network is crucial both for the separation and the integration of sensory signals of different modalities, a systematic unbiased approach to the use of specific neuromodulatory systems is still missing. Here, we have used the translating ribosome affinity purification (TRAP) technique to map the translatomes of excitatory glutamatergic (vGluT2 + ) and inhibitory GABA and/or glycinergic (vGAT + or Gad67 + ) neurons of the mouse spinal cord. Our analyses demonstrate that inhibitory and excitatory neurons are not only set apart, as expected, by the expression of genes related to the production, release or re-uptake of their principal neurotransmitters and by genes encoding for transcription factors, but also by a differential engagement of neuromodulator, especially neuropeptide, signaling pathways. Subsequent multiplex in situ hybridization revealed eleven neuropeptide genes that are strongly enriched in excitatory dorsal horn neurons and display largely non-overlapping expression patterns closely adhering to the laminar and presumably also functional organization of the spinal cord grey matter.
Spinally projecting noradrenergic neurons of the locus coeruleus display resistance to AAV2retro-mediated transduction
Background The locus coeruleus (LC) is the principal source of noradrenaline (NA) in the central nervous system. Projection neurons in the ventral portion of the LC project to the spinal cord and are considered the main source of spinal NA. To understand the precise physiology of this pathway, it is important to have tools that allow specific genetic access to these descending projections. AAV2retro serotype vectors are a potential tool to transduce these neurons via their axon terminals in the spinal cord, and thereby limit the expression of genetic material to the spinal projections from the LC. Here, we assess the suitability of AAV2retro to target these neurons and investigate strategies to increase their labelling efficiency. Results We show that the neurons in the LC that project to the spinal dorsal horn are largely resistant to transduction with AAV2retro serotype vectors. Compared to Cholera toxin B (CTb) tracing, AAV2retro.eGFP labelled far fewer neurons within the LC and surrounding regions, particularly within neurons that express tyrosine hydroxylase (TH), the rate-limiting enzyme for NA synthesis. We also show that the sensitivity for transduction of this projection can be increased using AAV2retro.eGFP.cre in ROSA26tdTom reporter mice (23% increase), with a higher proportion of the newly revealed neurons expressing TH compared to those directly labelled with AAV2retro containing an eGFP expression sequence. Conclusion These tracing studies identify limitations in AAV2retro-mediated retrograde transduction of a subset of projection neurons, specifically those that express NA and project to the spinal cord. This is likely to have implications for the study of NA-containing projections as well as other types of projection neuron in the central nervous system.
Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis
Selective loss of imprinting in neurogenesis Life-long neurogenesis is known to occur in some areas of the mammalian adult brain, including in the subventricular zone (SVZ), where interaction between neural precursor cells and resident astrocytes can produced migratory neuroblasts. Here, Anne Ferguson-Smith and colleagues reveal a differential role for the same developmental gene, Dlk1 , in neural precursor cells and astrocytes. The gene product, the Notch ligand DLK1, has two isoforms. One is an inductive niche factor secreted by astrocytes, and the other is a membrane-bound isoform required by the neural stem cells themselves to respond to secreted DLK1. Selective changes of imprinting with age modulate the role of Dlk1 in each cell type in mice, regulating neurogenesis when establishing the adult neurogenic niche. The modulation of genomic imprinting in a stem-cell environment adds a previously unrecognized element to epigenetic regulation. The gene for the atypical NOTCH ligand delta-like homologue 1 ( Dlk1 ) encodes membrane-bound and secreted isoforms that function in several developmental processes in vitro and in vivo . Dlk1 , a member of a cluster of imprinted genes, is expressed from the paternally inherited chromosome 1 , 2 . Here we show that mice that are deficient in Dlk1 have defects in postnatal neurogenesis in the subventricular zone: a developmental continuum that results in depletion of mature neurons in the olfactory bulb. We show that DLK1 is secreted by niche astrocytes, whereas its membrane-bound isoform is present in neural stem cells (NSCs) and is required for the inductive effect of secreted DLK1 on self-renewal. Notably, we find that there is a requirement for Dlk1 to be expressed from both maternally and paternally inherited chromosomes. Selective absence of Dlk1 imprinting in both NSCs and niche astrocytes is associated with postnatal acquisition of DNA methylation at the germ-line-derived imprinting control region. The results emphasize molecular relationships between NSCs and the niche astrocyte cells of the microenvironment, identifying a signalling system encoded by a single gene that functions coordinately in both cell types. The modulation of genomic imprinting in a stem-cell environment adds a new level of epigenetic regulation to the establishment and maintenance of the niche, raising wider questions about the adaptability, function and evolution of imprinting in specific developmental contexts.
Expression of green fluorescent protein defines a specific population of lamina II excitatory interneurons in the GRP::eGFP mouse
Dorsal horn excitatory interneurons that express gastrin-releasing peptide (GRP) are part of the circuit for pruritogen-evoked itch. They have been extensively studied in a transgenic line in which enhanced green fluorescent protein (eGFP) is expressed under control of the Grp gene. The GRP-eGFP cells are separate from several other neurochemically-defined excitatory interneuron populations, and correspond to a class previously defined as transient central cells. However, mRNA for GRP is widely distributed among excitatory interneurons in superficial dorsal horn. Here we show that although Grp mRNA is present in several transcriptomically-defined populations, eGFP is restricted to a discrete subset of cells in the GRP::eGFP mouse, some of which express the neuromedin receptor 2 and likely belong to a cluster defined as Glut8. We show that these cells receive much of their excitatory synaptic input from MrgA3/MrgD-expressing nociceptive/pruritoceptive afferents and C-low threshold mechanoreceptors. Although the cells were not innervated by pruritoceptors expressing brain natriuretic peptide (BNP) most of them contained mRNA for NPR1, the receptor for BNP. In contrast, these cells received only ~ 10% of their excitatory input from other interneurons. These findings demonstrate that the GRP-eGFP cells constitute a discrete population of excitatory interneurons with a characteristic pattern of synaptic input.
Targeted anatomical and functional identification of antinociceptive and pronociceptive serotonergic neurons that project to the spinal dorsal horn
Spinally projecting serotonergic neurons play a key role in controlling pain sensitivity and can either increase or decrease nociception depending on physiological context. It is currently unknown how serotonergic neurons mediate these opposing effects. Utilizing virus-based strategies and Tph2-Cre transgenic mice, we identified two anatomically separated populations of serotonergic hindbrain neurons located in the lateral paragigantocellularis (LPGi) and the medial hindbrain, which respectively innervate the superficial and deep spinal dorsal horn and have contrasting effects on sensory perception. Our tracing experiments revealed that serotonergic neurons of the LPGi were much more susceptible to transduction with spinally injected AAV2retro vectors than medial hindbrain serotonergic neurons. Taking advantage of this difference, we employed intersectional chemogenetic approaches to demonstrate that activation of the LPGi serotonergic projections decreases thermal sensitivity, whereas activation of medial serotonergic neurons increases sensitivity to mechanical von Frey stimulation. Together these results suggest that there are functionally distinct classes of serotonergic hindbrain neurons that differ in their anatomical location in the hindbrain, their postsynaptic targets in the spinal cord, and their impact on nociceptive sensitivity. The LPGi neurons that give rise to rather global and bilateral projections throughout the rostrocaudal extent of the spinal cord appear to be ideally poised to contribute to widespread systemic pain control.
Itch suppression in mice and dogs by modulation of spinal α2 and α3GABAA receptors
Chronic itch is a highly debilitating condition affecting about 10% of the general population. The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn, which may offer a hitherto unexploited therapeutic opportunity. Here, we found that specific pharmacological targeting of inhibitory α2 and α3GABA A receptors reduces acute histaminergic and non-histaminergic itch in mice. Systemic treatment with an α2/α3GABA A receptor selective modulator alleviates also chronic itch in a mouse model of atopic dermatitis and in dogs sensitized to house dust mites, without inducing sedation, motor dysfunction, or loss of antipruritic activity after prolonged treatment. Transsynaptic circuit tracing, immunofluorescence, and electrophysiological experiments identify spinal α2 and α3GABA A receptors as likely molecular targets underlying the antipruritic effect. Our results indicate that drugs targeting α2 and α3GABA A receptors are well-suited to alleviate itch, including non-histaminergic chronic itch for which currently no approved treatment exists. Chronic itch affects about 10% of the general population, however current treatments are largely ineffective. Here, the authors show that targeting of inhibitory α2 and α3GABA A receptors reduces itch in mice and in a canine model, suggesting this a potentially useful therapeutic approach.
Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission
GABA A receptors (GABA A Rs) mediate the majority of fast inhibitory neurotransmission in the brain via synergistic association with the postsynaptic scaffolding protein gephyrin and its interaction partners. However, unlike their counterparts at glutamatergic synapses, gephyrin and its binding partners lack canonical protein interaction motifs; hence, the molecular basis for gephyrin scaffolding has remained unclear. In this study, we identify and characterize two new posttranslational modifications of gephyrin, SUMOylation and acetylation. We demonstrate that crosstalk between SUMOylation, acetylation and phosphorylation pathways regulates gephyrin scaffolding. Pharmacological intervention of SUMO pathway or transgenic expression of SUMOylation-deficient gephyrin variants rescued gephyrin clustering in CA1 or neocortical neurons of Gabra2 -null mice, which otherwise lack gephyrin clusters, indicating that gephyrin SUMO modification is an essential determinant for scaffolding at GABAergic synapses. Together, our results demonstrate that concerted modifications on a protein scaffold by evolutionarily conserved yet functionally diverse signalling pathways facilitate GABAergic transmission. Gephyrin is a cytoplasmic scaffolding protein that selectively forms postsynaptic scaffolds at GABAergic and glycinergic synapses. Here the authors characterize regulatory mechanisms determining gephyrin scaffolding and GABAA receptor synaptic transmission that involve acetylation, SUMOylation and phosphorylation.
Calretinin-expressing islet cells are a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1–3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Neurogenin 2 controls cortical neuron migration through regulation of Rnd2
Neuronal migration: neurogenin 2 acts via Rnd2 Proneural transcription factors, such as neurogenin 2, are thought to control the expression of many genes during brain development to promote both the differentiation of neurons and their migration to their final locations in the cerebral cortex. A new study reveals that overexpression of a single target of neurogenin 2, Rnd2, can restore the neuronal migration defects of Neuogenin2-depleted neurons. Rnd2 is thus an atypical member of the Rho family of small GTP-ases, which regulate actin cytoskeleton dynamics, with its activity regulated at the gene transcription level, rather than by the usual post-translational GTP/GDP cycle. A study reveals that overexpression of a single target of neurogenin 2, Rnd2 , can restore the neuronal migration defects of neurogenin 2-depleted neurons. Rnd2 is thus an atypical member of the Rho family of small GTP-ases, which regulate actin cytoskeleton dynamics, with its activity regulated at the gene transcription level, rather than by the usual post-translational GTP/GDP cycle. Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex 1 , 2 , directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3 ) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2 -mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein.
Ascl1 (Mash1) Knockout Perturbs Differentiation of Nonneuronal Cells in Olfactory Epithelium
The embryonic olfactory epithelium (OE) generates only a very few olfactory sensory neurons when the basic helix-loop-helix transcription factor, ASCL1 (previously known as MASH1) is eliminated by gene mutation. We have closely examined the structure and composition of the OE of knockout mice and found that the absence of neurons dramatically affects the differentiation of multiple other epithelial cell types as well. The most prominent effect is observed within the two known populations of stem and progenitor cells of the epithelium. The emergence of horizontal basal cells, a multipotent progenitor population in the adult epithelium, is anomalous in the Ascl1 knockout mice. The differentiation of globose basal cells, another multipotent progenitor population in the adult OE, is also aberrant. All of the persisting globose basal cells are marked by SOX2 expression, suggesting a prominent role for SOX2 in progenitors upstream of Ascl1. However, NOTCH1-expressing basal cells are absent from the knockout; since NOTCH1 signaling normally acts to suppress Ascl1 via HES1 and drives sustentacular (Sus) cell differentiation during adult epithelial regeneration, its absence suggests reciprocity between neurogenesis and the differentiation of Sus cells. Indeed, the Sus cells of the mutant mice express a markedly lower level of HES1, strengthening that notion of reciprocity. Duct/gland development appears normal. Finally, the expression of cKIT by basal cells is also undetectable, except in those small patches where neurogenesis escapes the effects of Ascl1 knockout and neurons are born. Thus, persistent neurogenic failure distorts the differentiation of multiple other cell types in the olfactory epithelium.