Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Yonejima, Yasunori"
Sort by:
Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota
The gut microbiome is an important determinant in various diseases. Here we perform a cross-sectional study of Japanese adults and identify the Blautia genus, especially B. wexlerae , as a commensal bacterium that is inversely correlated with obesity and type 2 diabetes mellitus. Oral administration of B. wexlerae to mice induce metabolic changes and anti-inflammatory effects that decrease both high-fat diet–induced obesity and diabetes. The beneficial effects of B. wexlerae are correlated with unique amino-acid metabolism to produce S-adenosylmethionine, acetylcholine, and l -ornithine and carbohydrate metabolism resulting in the accumulation of amylopectin and production of succinate, lactate, and acetate, with simultaneous modification of the gut bacterial composition. These findings reveal unique regulatory pathways of host and microbial metabolism that may provide novel strategies in preventive and therapeutic approaches for metabolic disorders. Here, the authors inversely associate Blautia wexlerae with obesity and type 2 diabetes mellitus in humans and further show that administration of B. wexlerae to mice decrease both high-fat diet–induced obesity and diabetes via modulating gut microbial metabolism.
Effects of chocolate containing Leuconostoc mesenteroides strain NTM048 on immune function: a randomized, double-blind, placebo-controlled trial
Background Previous reports showed that oral administration of Leuconostoc mesenteroides strain NTM048 increases IgA levels and CD4+ T cell population in feces and mice, respectively, as revealed by flow cytometric analysis of splenocytes. This study aimed to evaluate the effect of chocolate supplemented with L. mesenteroides strain NTM048 (> 1.00 × 10 9  CFU/day, NTM048) on the immune parameters of healthy subjects, using a randomized, placebo-controlled, double-blinded study design. Methods Participants (mean age: 46.3 years) ingested 28 g of test food daily, at a time of their own choice, for 4 weeks. The immunological parameters of all participants were evaluated two times (pre- and post- ingestion). At the end of the study, various immunological parameters of the participants were measured and scoring of immunological vigor (SIV) was performed using a comprehensive algorithm. Results Ingestion of NTM048-supplemented chocolate significantly improved SIV in the NTM048 group (18.6 ± 1.6) compared to that in the placebo group (17.8 ± 2.0) after 4 weeks ( p  = 0.049). Several immunological parameters (CD8 + T cells, CD8 + CD28 + T cells, and memory T cells) were significantly elevated in the NTM048 group as compared to the placebo group (all p  < 0.05). In addition, T cell proliferation index at post-ingestion significantly increased compared with that at pre-ingestion in the NTM048 ( p  = 0.017) and placebo groups ( p  = 0.037), although no differences were observed between the two groups. Conclusion Our results suggest that ingestion of chocolate supplemented with NTM048 is effective against the age-related decline in T cell-related immune functions. Trial registration UMIN Clinical Trials Registry UMIN000021989. Registered 19 April 2016, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000025321
β-Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30
Baicalin (baicalein 7-O-β-D-glucuronide) is one of the major flavonoid glucuronides found in traditional herbal medicines. Because its aglycone, baicalein, is absorbed more quickly and shows more effective properties than baicalin, the conversion of baicalin into baicalein by β-glucuronidase (GUS) has drawn the attention of researchers. Recently, we have found that Lactobacillus brevis subsp. coagulans can convert baicalin to baicalein. Therefore, we aimed to identify and characterize the converting enzyme from L. brevis subsp. coagulans. First, we purified this enzyme from the cell-free extracts of L. brevis subsp. coagulans and cloned its gene. Surprisingly, this enzyme was found to be a GUS belonging to glycoside hydrolase (GH) family 30 (designated as LcGUS30), and its amino acid sequence has little similarity with any GUS belonging to GH families 1, 2, and 79 that have been reported so far. We then established a high-level expression and simple purification system of the recombinant LcGUS30 in Escherichia coli. The detailed analysis of the substrate specificity revealed that LcGUS30 has strict specificity toward glycon but not toward aglycones. Interestingly, LcGUS30 prefers baicalin rather than estrone 3-(β-D-glucuronide), one of the human endogenous steroid hormones. These results indicated that L. brevis subsp. coagulans and LcGUS30 should serve as powerful tools for the construction of a safe bioconversion system for baicalin. In addition, we propose that this novel type of GUS forms a new group in subfamily 3 of GH family 30.