Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,583 result(s) for "610 Medicine "
Sort by:
Liver metastases
Liver metastases are commonly detected in a range of malignancies including colorectal cancer (CRC), pancreatic cancer, melanoma, lung cancer and breast cancer, although CRC is the most common primary cancer that metastasizes to the liver. Interactions between tumour cells and the tumour microenvironment play an important part in the engraftment, survival and progression of the metastases. Various cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, parenchymal hepatocytes, dendritic cells, resident natural killer cells as well as other immune cells such as monocytes, macrophages and neutrophils are implicated in promoting and sustaining metastases in the liver. Four key phases (microvascular, pre-angiogenic, angiogenic and growth phases) have been identified in the process of liver metastasis. Imaging modalities such as ultrasonography, CT, MRI and PET scans are typically used for the diagnosis of liver metastases. Surgical resection remains the main potentially curative treatment among patients with resectable liver metastases. The role of liver transplantation in the management of liver metastasis remains controversial. Systemic therapies, newer biologic agents (for example, bevacizumab and cetuximab) and immunotherapeutic agents have revolutionized the treatment options for liver metastases. Moving forward, incorporation of genetic tests can provide more accurate information to guide clinical decision-making and predict prognosis among patients with liver metastases. Liver metastases are commonly detected in a range of malignancies originating from the pancreas, breast, colon or rectum. This Primer summarizes the epidemiology, mechanisms and diagnosis of liver metastasis, discusses the various treatment options and effects on quality of life, and highlights ongoing and future research areas.
Personalized Management of Pheochromocytoma and Paraganglioma
Abstract Pheochromocytomas/paragangliomas are characterized by a unique molecular landscape that allows their assignment to clusters based on underlying genetic alterations. With around 30% to 35% of Caucasian patients (a lower percentage in the Chinese population) showing germline mutations in susceptibility genes, pheochromocytomas/paragangliomas have the highest rate of heritability among all tumors. A further 35% to 40% of Caucasian patients (a higher percentage in the Chinese population) are affected by somatic driver mutations. Thus, around 70% of all patients with pheochromocytoma/paraganglioma can be assigned to 1 of 3 main molecular clusters with different phenotypes and clinical behavior. Krebs cycle/VHL/EPAS1-related cluster 1 tumors tend to a noradrenergic biochemical phenotype and require very close follow-up due to the risk of metastasis and recurrence. In contrast, kinase signaling–related cluster 2 tumors are characterized by an adrenergic phenotype and episodic symptoms, with generally a less aggressive course. The clinical correlates of patients with Wnt signaling–related cluster 3 tumors are currently poorly described, but aggressive behavior seems likely. In this review, we explore and explain why cluster-specific (personalized) management of pheochromocytoma/paraganglioma is essential to ascertain clinical behavior and prognosis, guide individual diagnostic procedures (biochemical interpretation, choice of the most sensitive imaging modalities), and provide personalized management and follow-up. Although cluster-specific therapy of inoperable/metastatic disease has not yet entered routine clinical practice, we suggest that informed personalized genetic-driven treatment should be implemented as a logical next step. This review amalgamates published guidelines and expert views within each cluster for a coherent individualized patient management plan. Graphical Abstract Graphical Abstract
Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis
This article describes conceptual advances of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) working group guidance to evaluate the certainty of evidence (confidence in evidence, quality of evidence) from network meta-analysis (NMA). Application of the original GRADE guidance, published in 2014, in a number of NMAs has resulted in advances that strengthen its conceptual basis and make the process more efficient. This guidance will be useful for systematic review authors who aim to assess the certainty of all pairwise comparisons from an NMA and who are familiar with the basic concepts of NMA and the traditional GRADE approach for pairwise meta-analysis. Two principles of the original GRADE NMA guidance are that we need to rate the certainty of the evidence for each pairwise comparison within a network separately and that in doing so we need to consider both the direct and indirect evidence. We present, discuss, and illustrate four conceptual advances: (1) consideration of imprecision is not necessary when rating the direct and indirect estimates to inform the rating of NMA estimates, (2) there is no need to rate the indirect evidence when the certainty of the direct evidence is high and the contribution of the direct evidence to the network estimate is at least as great as that of the indirect evidence, (3) we should not trust a statistical test of global incoherence of the network to assess incoherence at the pairwise comparison level, and (4) in the presence of incoherence between direct and indirect evidence, the certainty of the evidence of each estimate can help decide which estimate to believe. •The application of the Grading of Recommendations Assessments, Development, and Evaluation approach to a number of network meta-analyses in the 3 years since the original guidance publication has led to advances that have strengthened the conceptual basis.•We present, discuss, and illustrate four conceptual advances. These are based on two principles: we need to rate the certainty of the evidence of each pairwise comparison within a network separately and that we need to consider both the direct and indirect evidence contributing to each network estimate.•Although maximizing the efficiency of the process is desirable, as illustrated in the conceptual advances, use of these strategies requires careful judgment.
Arterial hypertension
Arterial hypertension is the most important contributor to the global burden of disease; however, disease control remains poor. Although the diagnosis of hypertension is still based on office blood pressure, confirmation with out-of-office blood pressure measurements (ie, ambulatory or home monitoring) is strongly recommended. The definition of hypertension differs throughout various guidelines, but the indications for antihypertensive therapy are relatively similar. Lifestyle adaptation is absolutely key in non-pharmacological treatment. Pharmacologically, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, calcium channel blockers, and diuretics are the first-line agents, with advice for the use of single-pill combination therapy by most guidelines. As a fourth-line agent, spironolactone should be considered. The rapidly evolving field of device-based therapy, especially renal denervation, will further broaden therapeutic options. Despite being a largely controllable condition, the actual rates of awareness, treatment, and control of hypertension are disappointingly low. Further improvements throughout the process of patient screening, diagnosis, treatment, and follow-up need to be urgently addressed.
Acute heart failure and cardiogenic shock: a multidisciplinary practical guidance
Purpose Acute heart failure (AHF) causes high burden of mortality, morbidity, and repeated hospitalizations worldwide. This guidance paper describes the tailored treatment approaches of different clinical scenarios of AHF and CS, focusing on the needs of professionals working in intensive care settings. Results Tissue congestion and hypoperfusion are the two leading mechanisms of end-organ injury and dysfunction, which are associated with worse outcome in AHF. Diagnosis of AHF is based on clinical assessment, measurement of natriuretic peptides, and imaging modalities. Simultaneously, emphasis should be given in rapidly identifying the underlying trigger of AHF and assessing severity of AHF, as well as in recognizing end-organ injuries. Early initiation of effective treatment is associated with superior outcomes. Oxygen, diuretics, and vasodilators are the key therapies for the initial treatment of AHF. In case of respiratory distress, non-invasive ventilation with pressure support should be promptly started. In patients with severe forms of AHF with cardiogenic shock (CS), inotropes are recommended to achieve hemodynamic stability and restore tissue perfusion. In refractory CS, when hemodynamic stabilization is not achieved, the use of mechanical support with assist devices should be considered early, before the development of irreversible end-organ injuries. Conclusion A multidisciplinary approach along the entire patient journey from pre-hospital care to hospital discharge is needed to ensure early recognition, risk stratification, and the benefit of available therapies. Medical management should be planned according to the underlying mechanisms of various clinical scenarios of AHF.
Innate lymphoid cells regulate intestinal epithelial cell glycosylation
Epithelial cells line the intestinal tract and help to keep the peace between our immune system and our trillions of gut microbes. Such peacekeeping requires glycosylated proteins (proteins with attached carbohydrate chains) present on the epithelial cell surface, but how glycosylation occurs is unclear. Goto et al. find that fucosylation (a type of glycosylation) of gut epithelial cells in mice requires gut microbes (see the Perspective by Hooper). This process also requires innate lymphoid cells there, which produce the cytokines interleukin-22 and lymphotoxin, presumably in response to microbial signals. These cytokines signal epithelial cells to add fucose to membrane proteins, which allows the détente between microbes and immune cells to continue. Science , this issue 10.1126/science.1254009 ; see also p. 1248 Glycosylation of gut epithelial cells requires gut microbes, innate lymphoid cells, and cytokines. [Also see Perspective by Hooper ] Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host–microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria–dependent and –independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium . Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.