Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
56
result(s) for
"631/337/470/1463"
Sort by:
Endoplasmic reticulum stress-mediated cell death in liver injury
by
Huang, Yan
,
Rao, Chaolong
,
Guo, Jiafu
in
631/337/470/1463
,
631/80/82
,
Activating transcription factor 6
2022
The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body’s main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.
Journal Article
The impact of the endoplasmic reticulum protein-folding environment on cancer development
2014
Key Points
Defective protein folding in the endoplasmic reticulum (ER) and unfolded protein response (UPR) activation are documented in many human cancer types, which is attributed to both intrinsic and extrinsic factors.
UPR activation is a vital step for oncogenic transformation, as UPR signalling molecules interact with well-established oncogene and tumour suppressor gene networks to modulate their function during cancer development.
Conditions of low nutrient supply (for example, glucose or oxygen deprivation), as well as excess nutrients (fatty acids, cholesterol and glucose) induce ER stress and UPR activation. UPR induction promotes cancer cell survival through induction of autophagy and adaptation to the stressful microenvironment.
ER stress and UPR activation possibly promote cancer development and progression through modulating inflammatory responses.
The UPR is indispensable in cells in the tumour microenvironment to either promote or inhibit cancer progression.
Targeting the UPR, through single or combination therapy, provides a promising therapeutic approach for many different cancers.
The unfolded protein response (UPR) is an important pro-survival pathway that is often activated in tumour cells owing to endoplasmic reticulum stress that is caused by both intrinsic and extrinsic factors. Wang and Kaufman discuss the mechanisms of UPR activation in tumour cells, the importance of this pathway to cancer development and targeting strategies for therapeutic intervention.
The endoplasmic reticulum (ER) is an essential organelle in eukaryotic cells for the storage and regulated release of calcium and as the entrance to the secretory pathway. Protein misfolding in the ER causes accumulation of misfolded proteins (ER stress) and activation of the unfolded protein response (UPR), which has evolved to maintain a productive ER protein-folding environment. Both ER stress and UPR activation are documented in many different human cancers. In this Review, we summarize the impact of ER stress and UPR activation on every aspect of cancer and discuss outstanding questions for which answers will pave the way for therapeutics.
Journal Article
The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity
2017
‘Crown-like’ structures composed of apoptotic adipocytes surrounded by adipose tissue macrophages (ATMs) are a characteristic of obesity. Liu and colleagues show that engulfment of apoptotic adipocytes triggers an ER stress response in ATMs and drives the proinflammatory response that underlies obesity.
Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1–M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in
Ern1
f/f
;
Lyz2
-Cre mice largely reversed high-fat diet (HFD)-induced M1–M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in
Ern1
f/f
;
Lyz2
-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.
Journal Article
Nitrosative stress drives heart failure with preserved ejection fraction
2019
Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice—elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using
N
ω
-nitro-
l
-arginine methyl ester (
l
-NAME)—recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and
S
-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α–XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.
iNOS-driven dysregulation of the IRE1α–XBP1 pathway leads to cardiomyocyte dysfunction in mice and recapitulates the systemic and cardiovascular features of human heart failure with preserved ejection fraction.
Journal Article
Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5−/− mice
2019
Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of
Rnf5
−/−
and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including
B. rodentium
, enriched in
Rnf5
−/−
mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in
Rnf5
−/−
mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.
RNF5 is a ubiquitin ligase regulating ER stress response. Here the authors show that Rnf5 deficiency potentiates immune response against melanoma via altered microbiota, and isolate bacterial strains that confer the same phenotype to wild type mice.
Journal Article
Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
by
Pechmann, Sebastian
,
Frydman, Judith
,
Chartron, Justin W
in
631/114
,
631/337/470/1463
,
631/337/470/1981
2014
Analyses of yeast codon usage and ribosome profiling data reveal a nonoptimal codon cluster in the mRNAs of ER-targeted proteins, downstream of the SRP-binding site, that would slow down translation to promote SRP interaction.
The genetic code allows most amino acids a choice of optimal and nonoptimal codons. We report that synonymous codon choice is tuned to promote interaction of nascent polypeptides with the signal recognition particle (SRP), which assists in protein translocation across membranes. Cotranslational recognition by the SRP
in vivo
is enhanced when mRNAs contain nonoptimal codon clusters 35–40 codons downstream of the SRP-binding site, the distance that spans the ribosomal polypeptide exit tunnel. A local translation slowdown upon ribosomal exit of SRP-binding elements in mRNAs containing these nonoptimal codon clusters is supported experimentally by ribosome profiling analyses in yeast. Modulation of local elongation rates through codon choice appears to kinetically enhance recognition by ribosome-associated factors. We propose that cotranslational regulation of nascent-chain fate may be a general constraint shaping codon usage in the genome.
Journal Article
Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding
2015
We show that
ATE1
-encoded Arg-transfer RNA transferase (R-transferase) of the N-end rule pathway mediates N-terminal arginylation of multiple endoplasmic reticulum (ER)-residing chaperones, leading to their cytosolic relocalization and turnover. N-terminal arginylation of BiP (also known as GRP78), protein disulphide isomerase and calreticulin is co-induced with autophagy during innate immune responses to cytosolic foreign DNA or proteasomal inhibition, associated with increased ubiquitylation. Arginylated BiP (R-BiP) is induced by and associated with cytosolic misfolded proteins destined for p62 (also known as sequestosome 1, SQSTM1) bodies. R-BiP binds the autophagic adaptor p62 through the interaction of its N-terminal arginine with the p62 ZZ domain. This allosterically induces self-oligomerization and aggregation of p62 and increases p62 interaction with LC3, leading to p62 targeting to autophagosomes and selective lysosomal co-degradation of R-BiP and p62 together with associated cargoes. In this autophagic mechanism, Nt-arginine functions as a delivery determinant, a degron and an activating ligand. Bioinformatics analysis predicts that many ER residents use arginylation to regulate non-ER processes.
Kim and colleagues and Kwon and colleagues reveal that amino-terminal arginylation of BiP promotes its targeting to autophagy adaptor p62 and subsequent lysosomal degradation of BiP, p62 and associated cargo.
Journal Article
IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation
2015
Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of the unfolded protein response (UPR), is a bona fide substrate of the Sel1L–Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both the intramembrane hydrophilic residues of IRE1α and the lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both
in vitro
and
in vivo
. Although enterocyte-specific Sel1L-knockout mice (
Sel1L
ΔIEC
) are viable and seem normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L–Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signalling
in vivo
by managing its protein turnover.
Through a proteomics approach, Qi and colleagues and Long and colleagues identify the sensor of the unfolded protein response IRE1α as an endogenous substrate of the E3 ubiquitin ligase involved in ER-associated degradation, Hrd1.
Journal Article
Endoplasmic reticulum stress—a key guardian in cancer
2024
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Journal Article