Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,614 result(s) for "Acute respiratory distress syndrome"
Sort by:
Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives
Purpose Esophageal pressure (Pes) is a minimally invasive advanced respiratory monitoring method with the potential to guide management of ventilation support and enhance specific diagnoses in acute respiratory failure patients. To date, the use of Pes in the clinical setting is limited, and it is often seen as a research tool only. Methods This is a review of the relevant technical, physiological and clinical details that support the clinical utility of Pes. Results After appropriately positioning of the esophageal balloon, Pes monitoring allows titration of controlled and assisted mechanical ventilation to achieve personalized protective settings and the desired level of patient effort from the acute phase through to weaning. Moreover, Pes monitoring permits accurate measurement of transmural vascular pressure and intrinsic positive end-expiratory pressure and facilitates detection of patient–ventilator asynchrony, thereby supporting specific diagnoses and interventions. Finally, some Pes-derived measures may also be obtained by monitoring electrical activity of the diaphragm. Conclusions Pes monitoring provides unique bedside measures for a better understanding of the pathophysiology of acute respiratory failure patients. Including Pes monitoring in the intensivist’s clinical armamentarium may enhance treatment to improve clinical outcomes.
Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study
Purpose To improve the outcome of the acute respiratory distress syndrome (ARDS), one needs to identify potentially modifiable factors associated with mortality. Methods The large observational study to understand the global impact of severe acute respiratory failure (LUNG SAFE) was an international, multicenter, prospective cohort study of patients with severe respiratory failure, conducted in the winter of 2014 in a convenience sample of 459 ICUs from 50 countries across five continents. A pre-specified secondary aim was to examine the factors associated with outcome. Analyses were restricted to patients (93.1 %) fulfilling ARDS criteria on day 1–2 who received invasive mechanical ventilation. Results 2377 patients were included in the analysis. Potentially modifiable factors associated with increased hospital mortality in multivariable analyses include lower PEEP, higher peak inspiratory, plateau, and driving pressures, and increased respiratory rate. The impact of tidal volume on outcome was unclear. Having fewer ICU beds was also associated with higher hospital mortality. Non-modifiable factors associated with worsened outcome from ARDS included older age, active neoplasm, hematologic neoplasm, and chronic liver failure. Severity of illness indices including lower pH, lower PaO 2 /FiO 2 ratio, and higher non-pulmonary SOFA score were associated with poorer outcome. Of the 578 (24.3 %) patients with a limitation of life-sustaining therapies or measures decision, 498 (86.0 %) died in hospital. Factors associated with increased likelihood of limitation of life-sustaining therapies or measures decision included older age, immunosuppression, neoplasia, lower pH and increased non-pulmonary SOFA scores. Conclusions Higher PEEP, lower peak, plateau, and driving pressures, and lower respiratory rate are associated with improved survival from ARDS. Trial Registration: ClinicalTrials.gov NCT02010073.
Epidemiology and patterns of tracheostomy practice in patients with acute respiratory distress syndrome in ICUs across 50 countries
Background\\nTo better understand the epidemiology and patterns of tracheostomy practice for patients with acute respiratory distress syndrome (ARDS), we investigated the current usage of tracheostomy in patients with ARDS recruited into the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG-SAFE) study.\\nMethods\\nThis is a secondary analysis of LUNG-SAFE, an international, multicenter, prospective cohort study of patients receiving invasive or noninvasive ventilation in 50 countries spanning 5 continents. The study was carried out over 4 weeks consecutively in the winter of 2014, and 459 ICUs participated. We evaluated the clinical characteristics, management and outcomes of patients that received tracheostomy, in the cohort of patients that developed ARDS on day 1–2 of acute hypoxemic respiratory failure, and in a subsequent propensity-matched cohort.\\nResults\\nOf the 2377 patients with ARDS that fulfilled the inclusion criteria, 309 (13.0%) underwent tracheostomy during their ICU stay. Patients from high-income European countries (n = 198/1263) more frequently underwent tracheostomy compared to patients from non-European high-income countries (n = 63/649) or patients from middle-income countries (n = 48/465). Only 86/309 (27.8%) underwent tracheostomy on or before day 7, while the median timing of tracheostomy was 14 (Q1–Q3, 7–21) days after onset of ARDS. In the subsample matched by propensity score, ICU and hospital stay were longer in patients with tracheostomy. While patients with tracheostomy had the highest survival probability, there was no difference in 60-day or 90-day mortality in either the patient subgroup that survived for at least 5 days in ICU, or in the propensity-matched subsample.\\nConclusions\\nMost patients that receive tracheostomy do so after the first week of critical illness. Tracheostomy may prolong patient survival but does not reduce 60-day or 90-day mortality.
Performance of Multiple Risk Assessment Tools to Predict Mortality for Adult Respiratory Distress Syndrome with Extracorporeal Membrane Oxygenation Therapy: An External Validation Study Based on Chinese Single-center Data
Background: There has been no external validation of survival prediction models for severe adult respiratory distress syndrome (ARDS) with extracorporeal membrane oxygenation (ECMO) therapy in China. The aim of study was to compare the performance of multiple models recently developed for patients with ARDS undergoing ECMO based on Chinese single-center data. Methods: A retrospective case study was performed, including twenty-three severe ARDS patients who received ECMO from January 2009 to July 2015. The PRESERVE (Predicting death for severe ARDS on VV-ECMO), ECMOnet, Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score, a center-specific model developed lbr inter-hospital transfers receiving ECMO, and the classical risk-prediction scores of Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) were calculated. In-hospital and six-month mortality were regarded as the endpoints and model performance was evaluated by comparing the area under the receiver operating characteristic curve (AUC). Results: The RESP and APACHE II scores showed excellent discriminate performance in predicting survival with AUC of 0.835 (95% confidence interval [CI], 0.659-1 .010, P = 0.007) and 0.762 (95% CI, 0.558-0.965, P = 0.035), respectively. The optimal cutoff values were risk class 3.5 for RESP and 35.5 for APACHE II score, and both showed 70.0% sensitivity and 84.6% specificity. The excellent performance of these models was also evident for the pneumonia etiological subgroup, for which the SOFA score was also shown to be predictive, with an AUC of 0.790 (95% CI, 0.571-1.009, P = 0.038). However, the ECMOnet and the score developed for externally retrieved ECMO patients failed to demonstrate significant discriminate power for the overall cohort. The PRESERVE model was unable to be evaluated fully since Conclusions: The RESP, APCHAE 11, and SOFA scorings only one patient died six months postdischarge. systems show good predictive value for intra-hospital survival of ARDS patients treated with ECMO in our single-center evaluation. Future validation should include a larger study with either more patients' data at single-center or by integration of domestic multi-center data. Development of a scoring system with national characteristics might be warranted.
Inhibition of Alveolar Macrophage Pyroptosis Reduces Lipopolysaccharide-induced Acute Lung Injury in Mice
Background:Pyroptosis is the term for caspase-l-dependent cell death associated with pro-inflammatory cytokines.The role of alveolar macrophage (AM) pyroptosis in the pathogenesis of the acute lung injury and acute respiratory distress syndrome (ALI/ARDS) remains unclear.Methods:C57BL/6 wild-type mice were assigned to sham,lipopolysaccharide (LPS) + vehicle,LPS + acetyl-tyrosyl-valyl-alanyl-aspartyl-chloromethylketone (Ac-YVAD-CMK) and LPS + Z-Asp-Glu-Val-Asp-fluoromethylketone groups.Mice were given intraperitoneal (IP) injections of LPS.Drugs were IP injected 1 h before LPS administration.Mice were sacrificed 16 h after LPS administration,and AMs were isolated.Western blot analysis for active caspase-1 and cleaved caspase-3,evaluation of lung injury and a cytokine release analysis were performed.AMs were treated with LPS and adenosine triphosphate (ATP);caspase-l-dependent cell death was evaluated using flow cytometry;the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) pyroptosomes were examined by immunofluorescence.Results:The expression of activated caspase-1 in AMs was enhanced following LPS challenge compared with the sham group.In the ex vivo study,the caspase-1/propidium iodide-positive cells,caspase-1 specks and ASC pyroptosomes were up-regulated in AMs following LPS/ATP stimulation.The specific caspase-1 inhibitor Ac-YVAD-CMK inhibited the activation of caspase-1 and pyroptotic cell death.Ac-YVAD-CMK also reduced the lung injury,pulmonary edema and total protein in bronchoalveolar lavage fluid (BALF).In addition,Ac-YVAD-CMK significantly inhibited interleukin-β (IL-lβ) release both in serum and BALF and reduced the levels of IL-18,tumor necrosis factor-α (TNF-α),High Mobility Group Box 1 (HMGB1) in BALF during LPS-induced ALI/ARDS.Conclusions:This study reported AM pyroptosis during LPS-induced ALI/ARDS in mice and has demonstrated that Ac-YVAD-CMK can prevent AM-induced pyroptosis and lung injury.These preliminary findings may form the basis for further studies to evaluate this pathway as a target for prevention or reduction of ALI/ARDS.
Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) is characterized by uncontrolled progressive lung inflammation. Macrophages serve a key role in the pathogenesis of ALI/ARDS. Macrophage pyroptosis is a process of cell death releasing the proinflammatory cytokines interleukin (IL)-1β and IL-18. It was hypothesized that macrophage pyroptosis may partially account for the uncontrolled lung inflammation of ALI/ARDS. In the present study, greater macrophage pyroptosis in lipopolysaccharide (LPS)-treated macrophages and the ALI/ARDS mouse model was observed. The expression of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing (NLRP)3 and IL-1β and cleavage of caspase-1 were significantly elevated following LPS treatment accompanied by greater activation of p38 mitogen-activated protein kinase (MAPK) signaling in vitro and in vivo. However, blocking p38 MAPK signaling through the inhibitor SB203580 significantly suppressed the acute lung injury and excessive lung inflammation in vivo, consistent with the reduced expression of the NLRP3 inflammasome and IL-1β and cleavage of caspase-1. Pretreatment of the rat NR8383 macrophage cell line with SB203580 significantly decreased the population of caspase-1+PI+ pyroptotic cells and expression of NLRP3/IL-1β. However, a larger population of Annexin V+PI- apoptotic cells was observed following blocking of the p38 MAPK signaling pathway. The results indicated that blockage of p38 MAPK signaling pathway skewed macrophage cell death from proinflammatory pyroptosis towards non-inflammatory apoptosis. These effects may contribute to attenuated acute lung injury and excessive inflammation in the SB203580-treated mice. The results may provide a novel therapeutic strategy for the treatment of uncontrolled lung inflammation in patients with ALI/ARDS.
COVID-19 Sepsis: Pathogenesis and Endothelial Molecular Mechanisms Based on “Two-Path Unifying Theory” of Hemostasis and Endotheliopathy-Associated Vascular Microthrombotic Disease, and Proposed Therapeutic Approach with Antimicrothrombotic Therapy
COVID-19 sepsis is characterized by acute respiratory distress syndrome (ARDS) as a consequence of pulmonary tropism of the virus and endothelial heterogeneity of the host. ARDS is a phenotype among patients with multiorgan dysfunction syndrome (MODS) due to disseminated vascular microthrombotic disease (VMTD). In response to the viral septicemia, the host activates the complement system which produces terminal complement complex C5b-9 to neutralize pathogen. C5b-9 causes pore formation on the membrane of host endothelial cells (ECs) if CD59 is underexpressed. Also, viral S protein attraction to endothelial ACE2 receptor damages ECs. Both affect ECs and provoke endotheliopathy. Disseminated endotheliopathy activates two molecular pathways: inflammatory and microthrombotic. The former releases inflammatory cytokines from ECs, which lead to inflammation. The latter initiates endothelial exocytosis of unusually large von Willebrand factor (ULVWF) multimers and FVIII from Weibel-Palade bodies. If ADAMTS13 is insufficient, ULVWF multimers activate intravascular hemostasis of ULVWF path. In activated ULVWF path, ULVWF multimers anchored to damaged endothelial cells recruit circulating platelets and trigger microthrombogenesis. This process produces \"microthrombi strings\" composed of platelet-ULVWF complexes, leading to endotheliopathy-associated VMTD (EA-VMTD). In COVID-19, microthrombosis initially affects the lungs per tropism causing ARDS, but EA-VMTD may orchestrate more complex clinical phenotypes, including thrombotic thrombocytopenic purpura (TTP)-like syndrome, hepatic coagulopathy, MODS and combined micro-macrothrombotic syndrome. In this pandemic, ARDS and pulmonary thromboembolism (PTE) have often coexisted. The analysis based on two hemostatic theories supports ARDS caused by activated ULVWF path is EA-VMTD and PTE caused by activated ULVWF and TF paths is macrothrombosis. The thrombotic disorder of COVID-19 sepsis is consistent with the notion that ARDS is virus-induced disseminated EA-VMTD and PTE is in-hospital vascular injury-related macrothrombosis which is not directly  related to viral pathogenesis. The pathogenesis-based therapeutic approach is discussed for the treatment of EA-VMTD with antimicrothrombotic regimen and the potential need of anticoagulation therapy for coinciding macrothrombosis in comprehensive COVID-19 care.
Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS
The role of non-invasive respiratory support (high-flow nasal oxygen and noninvasive ventilation) in the management of acute hypoxemic respiratory failure and acute respiratory distress syndrome is debated. The oxygenation improvement coupled with lung and diaphragm protection produced by non-invasive support may help to avoid endotracheal intubation, which prevents the complications of sedation and invasive mechanical ventilation. However, spontaneous breathing in patients with lung injury carries the risk that vigorous inspiratory effort, combined or not with mechanical increases in inspiratory airway pressure, produces high transpulmonary pressure swings and local lung overstretch. This ultimately results in additional lung damage (patient self-inflicted lung injury), so that patients intubated after a trial of noninvasive support are burdened by increased mortality. Reducing inspiratory effort by high-flow nasal oxygen or delivery of sustained positive end-expiratory pressure through the helmet interface may reduce these risks. In this physiology-to-bedside review, we provide an updated overview about the role of noninvasive respiratory support strategies as early treatment of hypoxemic respiratory failure in the intensive care unit. Noninvasive strategies appear safe and effective in mild-to-moderate hypoxemia (PaO2/FiO2 > 150 mmHg), while they can yield delayed intubation with increased mortality in a significant proportion of moderate-to-severe (PaO2/FiO2 ≤ 150 mmHg) cases. High-flow nasal oxygen and helmet noninvasive ventilation represent the most promising techniques for first-line treatment of severe patients. However, no conclusive evidence allows to recommend a single approach over the others in case of moderate-to-severe hypoxemia. During any treatment, strict physiological monitoring remains of paramount importance to promptly detect the need for endotracheal intubation and not delay protective ventilation.
Emerging roles of mechanosensitive ion channels in acute lung injury/acute respiratory distress syndrome
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a devastating respiratory disorder with high rates of mortality and morbidity, but the detailed underlying mechanisms of ALI/ARDS remain largely unknown. Mechanosensitive ion channels (MSCs), including epithelial sodium channel (ENaC), Piezo channels, transient receptor potential channels (TRPs), and two-pore domain potassium ion (K2P) channels, are highly expressed in lung tissues, and the activity of these MSCs can be modulated by mechanical forces (e.g., mechanical ventilation) and other stimuli (e.g., LPS, hyperoxia). Dysfunction of MSCs has been found in various types of ALI/ARDS, and MSCs play a key role in regulating alveolar fluid clearance, alveolar epithelial/endothelial barrier function, the inflammatory response and surfactant secretion in ALI/ARDS lungs. Targeting MSCs exerts therapeutic effects in the treatment of ALI/ARDS. In this review, we summarize the structure and functions of several well-recognized MSCs, the role of MSCs in the pathogenesis of ALI/ARDS and recent advances in the pharmacological and molecular modulation of MSCs in the treatment of ALI/ARDS. According to the current literature, targeting MSCs might be a very promising therapeutic approach against ALI/ARDS.
Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers
Outcomes after acute respiratory distress syndrome (ARDS) are similar to those of other survivors of critical illness and largely affect the nerve, muscle, and central nervous system but also include a constellation of varied physical devastations ranging from contractures and frozen joints to tooth loss and cosmesis. Compromised quality of life is related to a spectrum of impairment of physical, social, emotional, and neurocognitive function and to a much lesser extent discrete pulmonary disability. Intensive care unit-acquired weakness (ICUAW) is ubiquitous and includes contributions from both critical illness polyneuropathy and myopathy, and recovery from these lesions may be incomplete at 5 years after ICU discharge. Cognitive impairment in ARDS survivors ranges from 70 to 100 % at hospital discharge, 46 to 80 % at 1 year, and 20 % at 5 years, and mood disorders including depression and post-traumatic stress disorder (PTSD) are also sustained and prevalent. Robust multidisciplinary and longitudinal interventions that improve these outcomes are still uncertain and data in our literature are conflicting. Studies are needed in family members of ARDS survivors to better understand long-term outcomes of the post-ICU family syndrome and to evaluate how it affects patient recovery.