Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
69,848
result(s) for
"Agriculture - methods"
Sort by:
Distinct soil microbial diversity under long-term organic and conventional farming
2015
Low-input agricultural systems aim at reducing the use of synthetic fertilizers and pesticides in order to improve sustainable production and ecosystem health. Despite the integral role of the soil microbiome in agricultural production, we still have a limited understanding of the complex response of microbial diversity to organic and conventional farming. Here we report on the structural response of the soil microbiome to more than two decades of different agricultural management in a long-term field experiment using a high-throughput pyrosequencing approach of bacterial and fungal ribosomal markers. Organic farming increased richness, decreased evenness, reduced dispersion and shifted the structure of the soil microbiota when compared with conventionally managed soils under exclusively mineral fertilization. This effect was largely attributed to the use and quality of organic fertilizers, as differences became smaller when conventionally managed soils under an integrated fertilization scheme were examined. The impact of the plant protection regime, characterized by moderate and targeted application of pesticides, was of subordinate importance. Systems not receiving manure harboured a dispersed and functionally versatile community characterized by presumably oligotrophic organisms adapted to nutrient-limited environments. Systems receiving organic fertilizer were characterized by specific microbial guilds known to be involved in degradation of complex organic compounds such as manure and compost. The throughput and resolution of the sequencing approach permitted to detect specific structural shifts at the level of individual microbial taxa that harbours a novel potential for managing the soil environment by means of promoting beneficial and suppressing detrimental organisms.
Journal Article
Comparing the yields of organic and conventional agriculture
by
Ramankutty, Navin
,
Foley, Jonathan A.
,
Seufert, Verena
in
631/449/447
,
Agricultural and farming systems
,
Agricultural Irrigation
2012
A meta-analysis assessing the relative yields of organic and conventional agriculture shows that organic yields are on average lower, but that the magnitude of the difference is dependent on context.
Crop yields compared
There is much debate over the relative merits of conventional farming, which has a large environmental impact on the land it uses, and organic farming, which may require greater land use for the same yield. Central to this debate — and the subject of some controversy — are the relative yields of the two farming systems. Seufert
et al
. present a meta-analysis of the available scientific literature on organic-to-conventional yield comparisons, and conclude that organic yields are indeed lower, but that the difference varies substantially according to crop type, growing conditions and management practices. For instance, for perennials grown on favourable soils organic yields are just 5% lower than conventional yields, but the yield difference between the most comparable conventional and organic systems is as high as 34%. The authors conclude that the factors that limit organic yields need to be better understood to enable meaningful comparisons between the rival forms of agriculture.
Numerous reports have emphasized the need for major changes in the global food system: agriculture must meet the twin challenge of feeding a growing population, with rising demand for meat and high-calorie diets, while simultaneously minimizing its global environmental impacts
1
,
2
. Organic farming—a system aimed at producing food with minimal harm to ecosystems, animals or humans—is often proposed as a solution
3
,
4
. However, critics argue that organic agriculture may have lower yields and would therefore need more land to produce the same amount of food as conventional farms, resulting in more widespread deforestation and biodiversity loss, and thus undermining the environmental benefits of organic practices
5
. Here we use a comprehensive meta-analysis to examine the relative yield performance of organic and conventional farming systems globally. Our analysis of available data shows that, overall, organic yields are typically lower than conventional yields. But these yield differences are highly contextual, depending on system and site characteristics, and range from 5% lower organic yields (rain-fed legumes and perennials on weak-acidic to weak-alkaline soils), 13% lower yields (when best organic practices are used), to 34% lower yields (when the conventional and organic systems are most comparable). Under certain conditions—that is, with good management practices, particular crop types and growing conditions—organic systems can thus nearly match conventional yields, whereas under others it at present cannot. To establish organic agriculture as an important tool in sustainable food production, the factors limiting organic yields need to be more fully understood, alongside assessments of the many social, environmental and economic benefits of organic farming systems.
Journal Article
Bacillus velezensis: a versatile ally in the battle against phytopathogens—insights and prospects
by
Esmaeel, Qassim
,
Ait-Barka, Essaid
,
Kenfaoui, Jihane
in
agricultural biotechnology
,
Agriculture
,
Agriculture - methods
2024
The escalating interest in
Bacillus velezensis
as a biocontrol agent arises from its demonstrated efficacy in inhibiting both phytopathogenic fungi and bacteria, positioning it as a promising candidate for biotechnological applications. This mini review aims to offer a comprehensive exploration of the multifaceted properties of
B. velezensis
, with particular focus on its beneficial interactions with plants and its potential for controlling phytopathogenic fungi. The molecular dialogues involving
B. velezensis
, plants, and phytopathogens are scrutinized to underscore the intricate mechanisms orchestrating these interactions. Additionally, the review elucidates the mode of action of
B. velezensis
, particularly through cyclic lipopeptides, highlighting their importance in biocontrol and promoting plant growth. The agricultural applications of
B. velezensis
are detailed, showcasing its role in enhancing crop health and productivity while reducing reliance on chemical pesticides. Furthermore, the review extends its purview in the industrial and environmental arenas, highlighting its versatility across various sectors. By addressing challenges such as formulation optimization and regulatory frameworks, the review aims to chart a course for the effective utilization of
B. velezensis
.
Key points
•
B. velezensis fights phytopathogens, boosting biotech potential
•
B. velezensis shapes agri-biotech future, offers sustainable solutions
•
Explores plant-B. velezensis dialogue, lipopeptide potential showcased
Journal Article
Crop calendar optimization for climate change adaptation in yam farming in South-Kivu, eastern D.R. Congo
by
Kihye, Jacques B.
,
Majaliwa, Jackson-Gilbert M.
,
Matiti, Henri M.
in
Acclimatization (Plants)
,
Agricultural production
,
Agriculture
2024
The traditional crop calendar for yam (
Dioscorea
spp.) in South-Kivu, eastern Democratic Republic of Congo (DRC), is becoming increasingly inadequate given the significant climatic variability observed over the last three decades. This study aimed at: (i) assessing trends in weather data across time and space to ascertain climate change, and (ii) optimizing the yam crop calendar for various South-Kivu agro-ecological zones (AEZs) to adapt to the changing climate. The 1990–2022 weather data series were downloaded from the NASA-MERRA platform, bias correction was carried out using local weather stations’ records, and analyses were performed using RClimDex 1.9. Local knowledge and CROPWAT 8.0 were used to define planting dates for yam in different AEZs. Results showed the existence of four AEZs in the South-Kivu province, with contrasting altitudes, temperatures, and rainfall patterns. Climate change is real in all these South-Kivu’s AEZs, resulting either in rainfall deficits in some areas, or extreme rainfall events in others, with significant temperature increases across all AEZs. Suitable yam planting dates varied with AEZs, September 15
th
and 20
th
were recommended for the AEZ 2 while October 15
th
was optimal for AEZ 1, AEZ 3, and AEZ 4. However, none of the planting date scenarios could meet the yam water requirements in AEZ1, AEZ3, and AEZ4, since the effective rainfall (Pmm) was always inferior to the plant water demand (ETc), meaning that soil water conservation practices are needed for optimum plant growth and yield in these AEZs. This study does not recommend planting yam during the short rainy season owing to prolonged droughts coinciding with critical growth phases of yam, unless supplemental irrigation is envisaged. This study provided insights on the nature of climate change across the past three decades and suggested a yam crop calendar that suits the changing climate of eastern DRC.
Journal Article
Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol
by
Singh, Akanksha
,
Riar, Amritbir
,
Sisodia, Bhupendra Singh
in
Agriculture - methods
,
Bacteria - classification
,
Bacteria - genetics
2024
The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.
Journal Article
Soil quality and microbial diversity across organic and conventional coffee in central Western Ghats India
by
Manjunatha, M. H.
,
Veeranagappa, P.
,
Bhavya, N.
in
631/326
,
704/172/4081
,
Agricultural practices
2025
The green revolution, characterized by intensive farming practices and synthetic agrochemicals, has been associated with concerns about ecological balance and soil health. This study investigated the impact of organic and conventional farming practices on soil quality and microbial diversity in coffee plantations within the Western Ghats. Soil samples from organic and conventional coffee farms in Ponnampet, Kodagu, Karnataka were collected for physical, chemical, and biological analysis. Organic soils had lower bulk density and particle density, suggesting improved structure and porosity. Organic systems had higher levels of organic carbon, nitrogen, and exchangeable calcium and magnesium. Organic coffee farming exhibited the highest soil quality index value of 0.98, which was higher than that of conventional coffee farming practice (0.87). Organic farming systems demonstrated significantly higher soil microbial respiration rates, reflecting a more active and diverse microbial community. Organic coffee farming systems not only promoted higher microbial biomass but also the higher value of Shannon–Wiener’s index, Simpson’s Diversity Index, Shannon and Simpson evenness index enhanced microbial diversity. These findings underscore the potential of organic coffee farming for sustainable agriculture in the Western Ghats, particularly in terms of enhancing soil health, promoting microbial diversity, and improving long-term soil quality compared to conventional practices.
Journal Article
Diversity and structure of prokaryotic communities within organic and conventional farming systems in central highlands of Kenya
by
Fiaboe, Komi
,
Karanja, Edward Nderitu
,
Fliessbach, Andreas
in
Acidobacteria - genetics
,
Acidobacteria - isolation & purification
,
Agricultural practices
2020
Management practices such as tillage, crop rotation, irrigation, organic and inorganic inputs application are known to influence diversity and function of soil microbial populations. In this study, we investigated the effect of conventional versus organic farming systems at low and high input levels on structure and diversity of prokaryotic microbial communities. Soil samples were collected from the ongoing long-term farming system comparison trials established in 2007 at Chuka and Thika in Kenya. Physicochemical parameters for each sample were analyzed. Total DNA and RNA amplicons of variable region (V4-V7) of the 16S rRNA gene were generated on an Illumina platform using the manufacturer's instructions. Diversity indices and statistical analysis were done using QIIME2 and R packages, respectively. A total of 29,778,886 high quality reads were obtained and assigned to 16,176 OTUs at 97% genetic distance across both 16S rDNA and 16S rRNA cDNA datasets. The results pointed out a histrionic difference in OTUs based on 16S rDNA and 16S rRNA cDNA. Precisely, while 16S rDNA clustered by site, 16S rRNA cDNA clustered by farming systems. In both sites and systems, dominant phylotypes were affiliated to phylum Actinobacteria, Proteobacteria and Acidobacteria. Conventional farming systems showed a higher species richness and diversity compared to organic farming systems, whilst 16S rRNA cDNA datasets were similar. Physiochemical factors were associated differently depending on rRNA and rDNA. Soil pH, electrical conductivity, organic carbon, nitrogen, potassium, aluminium, zinc, iron, boron and micro-aggregates showed a significant influence on the observed microbial diversity. The observed higher species diversity in the conventional farming systems can be attributed to the integration of synthetic and organic agricultural inputs. These results show that the type of inputs used in a farming system not only affect the soil chemistry but also the microbial population dynamics and eventually the functional roles of these microbes.
Journal Article
Organic farming significantly improves microbial community structure, network complexity, and functional diversity in the Gannan navel orange orchard
by
Li, Xuexian
,
Liu, Lianlian
,
Muneer, Muhammad Atif
in
Acidification
,
Agricultural management
,
Agricultural practices
2025
Background
In recent years, improper agricultural management practices have led to the loss of biodiversity and poor fruit quality in orchards. Converting conventional farming to organic farming is an environmentally responsible approach to improving sustainable fruit production. However, questions remain regarding how the microbial community responds to different farming practices in citrus trees. Specifically, this study aims to investigate how organic and conventional farming affect the microbial community structure and functional diversity in the Gannan navel orange orchard using 16S rRNA gene sequencing and Biolog Eco-Plate analysis.
Results
The results showed that the soil bacterial diversity (α-diversity index) under organic farming was higher than that under conventional farming. Actinobacteria, Bacteroidetes, and Firmicutes were more abundant in root and fruit compartments under organic farming, indicating that organic farming promotes the enrichment of copiotrophic bacteria (r-strategists). Furthermore, organic farming resulted in a considerable increase in the relative abundance of
Burkholderia
and
Streptomyces
in root tissues. Interestingly, organic farming exhibited a more complex bacterial network. Biolog analysis further revealed higher functional diversity of the soil microbial community under organic farming when compared with that under conventional farming.
Conclusions
These findings provide evidence that organic farming improves the bacterial community structure and promotes microbial functional diversity in the citrus orchards, contributing to the overall health and production of the citrus crop. Synthetic microbial communities of the organic citrus orchards hold great promise for more efficient environment-friendly orchard management towards sustainable agriculture.
Journal Article
Does Increasing Farm Plot Size Influence the Visual Quality of Everyday Agricultural Landscapes?
by
Azadi, Hossein
,
Janeckova Molnarova, Kristina
,
Bohnet, Iris C.
in
Agricultural land
,
agricultural landscape
,
Agricultural production
2022
The increase in farm plot size is one of the most apparent and significant trends that have influenced central and eastern European agricultural landscapes since the 1950s. In many countries where the average plot size in traditional land-use systems did not exceed several hectares, present-day plots reach the size of 200 ha or more. In recent times, efforts have been made to reverse this trend to restore important ecosystem functions and to re-establish the aesthetic values of everyday landscapes. Visual landscape quality is becoming a major driving force in the development of agricultural landscapes with known effects on people’s well-being and health, and this quality plays an increasingly important role in agricultural policies. However, no comprehensive research has been carried out to establish the links between perceived visual landscape quality and the scale of the farm plot pattern. The current study was therefore designed to determine whether greater farmland pattern heterogeneity, i.e., smaller farm plot sizes, is consistent with higher visual preferences. The results showed that people preferred a small-scale plot pattern in landscapes characterized by a flat relief and a low proportion of woody vegetation. These homogeneous landscapes were also overall considered significantly less beautiful than more diverse landscapes. However, even a moderate decrease in plot size notably improved these low beauty scores. These preferences were displayed consistently by all respondents, and most strongly by older respondents, respondents with a higher level of education, and those professionally engaged in landscape design or conservation. The high level of consensus among respondents in rejecting further land consolidation in homogeneous landscapes, which form a large proportion of European farmland, underlines that the results of this study provide a valid argument for discussing sustainable agricultural plot sizes as part of agricultural policy-making.
Journal Article
Evaluating the impact of climate change on yield and water use efficiency of different dry-season rice varieties cultivated under conventional and alternate wetting and drying conditions
by
Oeurng, Chantha
,
Degré, Aurore
,
Phoeurn, Chan Arun
in
Agriculture
,
Agriculture - methods
,
Alternate wetting and drying
2024
This study is the first attempt to assess rice cultivation under alternate wetting and drying (AWD) and continuous flooding (CF) using the latest scenarios from the Intergovernmental Panel on Climate Change (IPCC), utilizing AquaCrop Model. Field experiments were conducted during the dry season 2023 to get the model calibration and validation input. We used two shared socioeconomic pathways scenarios (SSP3-7.0 and SSP5-8.5) developed within Coupled Model Intercomparison Project Phase 6 (CMIP6) and projected the rice growth during 2040–2070. The simulation results demonstrated the effectiveness of AquaCrop in capturing crop development across treatments and varieties. This model’s accuracy in simulating canopy cover (nRMSE = 14–32.5%), time series biomass (nRMSE = 22–42.5%), grain yield (Pd = 4.36–24.38%), and total biomass (nRMSE = 0.39–18.98%) was generally acceptable. The analysis of future climate shows an increasing trend in the monthly average temperature by 0.8 °C (Tmin) and 1.3 °C (Tmax) in both scenarios. While ETo values were not anticipated, rainfall was expected to increase with average values of 5.62 mm to 11.25 mm. In addition, the study found that varieties with growing periods longer than 93 days after transplanting (DAT), such as CAR15 and Sen Kra Ob, were most impacted by heat stress conditions, leading to reduced yield, harvest index (HI), and water use efficiency (WUE). In our case, CAR15 and Sen Kra Ob grain yields were reduced by 53% and 8%, respectively. AWD maintains superior WUE compared with CF regardless of the type of varieties, suggesting this technique is a drought-adaptive strategy.
Journal Article