Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
409 result(s) for "Allergens - isolation "
Sort by:
Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement
Acute allergic symptoms are caused by allergen-induced crosslinking of allergen-specific immunoglobulin E (IgE) bound to Fc-epsilon receptors on effector cells. Desensitization with allergen-specific immunotherapy (SIT) has been used for over a century, but the dominant protective mechanism remains unclear. One consistent observation is increased allergen-specific IgG, thought to competitively block allergen binding to IgE. Here we show that the blocking potency of the IgG response to Cat-SIT is heterogeneous. Next, using two potent, pre-selected allergen-blocking monoclonal IgG antibodies against the immunodominant cat allergen Fel d 1, we demonstrate that increasing the IgG/IgE ratio reduces the allergic response in mice and in cat-allergic patients: a single dose of blocking IgG reduces clinical symptoms in response to nasal provocation (ANCOVA, p  = 0.0003), with a magnitude observed at day 8 similar to that reported with years of conventional SIT. This study suggests that simply augmenting the blocking IgG/IgE ratio may reverse allergy. Allergen-specific immunotherapy is used to treat patients affected by acute immunoglobulin E (IgE) responses, but the function mechanism is unclear. Here the authors show that the administration of two cat allergen-specific IgGs reduces allergic responses in mouse models and helps ameliorate clinical symptoms in a phase 1b clinical trial.
The ecology of microscopic life in household dust
We spend the majority of our lives indoors; yet, we currently lack a comprehensive understanding of how the microbial communities found in homes vary across broad geographical regions and what factors are most important in shaping the types of microorganisms found inside homes. Here, we investigated the fungal and bacterial communities found in settled dust collected from inside and outside approximately 1200 homes located across the continental US, homes that represent a broad range of home designs and span many climatic zones. Indoor and outdoor dust samples harboured distinct microbial communities, but these differences were larger for bacteria than for fungi with most indoor fungi originating outside the home. Indoor fungal communities and the distribution of potential allergens varied predictably across climate and geographical regions; where you live determines what fungi live with you inside your home. By contrast, bacterial communities in indoor dust were more strongly influenced by the number and types of occupants living in the homes. In particular, the female : male ratio and whether a house had pets had a significant influence on the types of bacteria found inside our homes highlighting that who you live with determines what bacteria are found inside your home.
Purification and Characterization of Punein, a Pomegranate PR-4 Protein Showing Structural Similarities with the Hevein Precursor
The detection of molecules belonging to the pathogenesis-related protein-4 (PR-4) family as a cause of allergic reactions towards the pomegranate fruit has already been suggested, although information regarding their isolation and characterization is not available in the literature. The objective of this study was the purification and description of some features of a pomegranate PR-4 protein. This protein, named punein, was purified by classical biochemical methods, identified by direct protein sequencing and mass spectrometry and analyzed by bioinformatic tools. Biochemical characterization shows that punein has a molecular mass of 13.29 kDa by mass spectrometry and about 14 kDa on SDS-PAGE, and it displays a blocked N-terminus. Bioinformatic analysis highlights that its primary structure shows similarity with the allergens prohevein (containing the strong allergen Hev b 6) and Bra r 2, from latex and turnip, respectively. In particular, punein could be aligned with the C-terminal region of prohevein, which shows IgE epitope regions, the amino acid sequences of which are partially conserved in the two molecules. However, further investigations are needed to understand the clinical relevance of this PR-4 food protein and the factors affecting the concentration of specific proteins, including punein, that are recognized by the immune systems of patients sensitized to pomegranate.
Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates
Since 2018, insects have belonged the category of Novel Foods and the presence of allergens represents one of the main hazards connected to their consumption, also due to the potential cross-reactivity with Arthropoda pan-allergens. In the present work, the allergenicity assessment of black soldier fly and lesser mealworm was performed with a shotgun bottom-up proteomic approach combined with in-silico assessment, followed by IgG- and IgE-immunoblotting experiments. The peptides identified, filtered for their abundance and robustness, belonged mainly to muscle proteins, which represented the most abundant protein group. The relevant potential allergens were in-silico identified by sequence similarity to known allergens, and among them tropomyosin resulted the most abundant insect allergen. IgG-immunoblotting analysis with anti-Tropomyosin I antibodies and IgE-immunoblotting assay with serum from patient allergic to crustacean tropomyosin were performed in order to assess the immunoreactivity in both insects. The immunoassays were carried out also on protein hydrolysates extracted by treating insects with Protease from Bacillus licheniformis (1%, 60 °C, pH 7.5). While IgG-immunoblotting demonstrated the loss of immunoreactivity for both hydrolysates, IgE-immunoblotting showed a partial immunoreactivity preservation, also after hydrolysis, in the case of black soldier fly hydrolysate, and a total loss of immunoreactivity for lesser mealworm hydrolysate
Purification of Prudu6 from Almond and Its Cross-Reactivity with Glym6 from Soybean
Almond (Prunus dulcis) is a tree nut with high nutritional value that is widely cultivated and consumed globally. Prudu6, an 11S globulin, is one of the main allergens in almond, which can trigger a series of severe allergic reactions. To our knowledge, its correlation with Glym6, another 11S globulin, in terms of allergenicity has not yet been studied. In this study, natural Prudu6 was obtained by the optimized column chromatography method. Its structure was studied by the CD spectra, ultraviolet spectra and bioinformatics method. Then, WB and ELISA were performed to analyze the cross-reactivity. Prudu6 of high purity (>85%) was obtained by one-step chromatography. Strong cross-reactivity was found between Prudu6 and Glym6, which were also the main actors in the cross-reactivity between almond and soybean. For IgE in sera from almond-allergic patients, Glym6 demonstrated considerable affinity compared with Prudu6, while Prudu6 could hardly inhibit Glym6 in the soybean group. Three groups of epitope structures were found to be common in both proteins. These similar epitopes were regarded as the core structures causing the cross-reactivity between Prudu6 and Glym6.
Purification and biochemical characterization of Hel a 6, a cross-reactive pectate lyase allergen from Sunflower (Helianthus annuus L.) pollen
Sunflower pollen was reported to contain respiratory allergens responsible for occupational allergy and pollinosis. The present study describes the comprehensive characterization of a major sunflower allergen Hel a 6. Natural Hel a 6 was purified from sunflower pollen by anion exchange and gel filtration chromatography. Hel a 6 reacted with IgE-antibodies from 57% of 39 sunflower-sensitized patient sera suggesting it to be a major allergen. The patients were of Indian origin and suffering from pollinosis and allergic rhinitis. Hel a 6 exhibited allergenic activity by stimulating mediator release from basophils. Monomeric Hel a 6 displayed pectate lyase activity. The effect of various physicochemical parameters such as temperature, pH, and calcium ion on the functional activity of Hel a 6 revealed a stable nature of the protein. Hel a 6 was folded, and its melting curve showed reversible denaturation in which it refolded back to its native conformation from a denatured state. Hel a 6 displayed a high degree of sequence conservation with the pectate lyase allergens from related taxonomic families such as Amb a 1 (67%) and Art v 6 (57%). The IgE-cross reactivity was observed between Hel a 6 and its ragweed and mugwort homologs. The cross-reactivity was further substantiated by the mediator release when Hel a 6-sensitized effector cells were cross-stimulated with Art v 6 and Amb a 1. Several putative B cell epitopes were predicted and mapped on these 3 allergens. Two antigenic regions were found to be commonly shared by these 3 allergens, which could be crucial for cross-reactivity. In conclusion, Hel a 6 serves as a candidate molecule for diagnosis and immunotherapy for weed allergy.
Development of a Novel Strategy to Isolate Lipophilic Allergens (Oleosins) from Peanuts
Peanut allergy is one of the most severe class I food allergies with increasing prevalence. Especially lipophilic allergens, such as oleosins, were found to be associated with severe symptoms, but are usually underrepresented in diagnostic extracts. Therefore, this study focused on isolation, molecular characterization and assessment of the allergenicity of peanut oleosins. A comprehensive method adapted for the isolation of peanut oil bodies of high purity was developed comprising a stepwise removal of seed storage proteins from oil bodies. Further separation of the oil body constituents, including the allergens Ara h 10, Ara h 11, the presumed allergen oleosin 3 and additional oleosin variants was achieved by a single run on a preparative electrophoresis cell. Protein identification realized by N-terminal sequencing, peptide mass fingerprinting and homology search revealed the presence of oleosins, steroleosins and a caleosin. Immunoblot analysis with sera of peanut-allergic individuals illustrated the IgE-binding capacity of peanut-derived oleosins. Our method is a novel way to isolate all known immunologically distinct peanut oleosins simultaneously. Moreover, we were able to provide evidence for the allergenicity of oleosins and thus identified peanut oleosins as probable candidates for component-resolved allergy diagnosis.
Structural Characterization of Act c 10.0101 and Pun g 1.0101—Allergens from the Non-Specific Lipid Transfer Protein Family
(1) Background: Non-specific lipid transfer proteins (nsLTPs), which belong to the prolamin superfamily, are potent allergens. While the biological role of LTPs is still not well understood, it is known that these proteins bind lipids. Allergen nsLTPs are characterized by significant stability and resistance to digestion. (2) Methods: nsLTPs from gold kiwifruit (Act c 10.0101) and pomegranate (Pun g 1.0101) were isolated from their natural sources and structurally characterized using X-ray crystallography (3) Results: Both proteins crystallized and their crystal structures were determined. The proteins have a very similar overall fold with characteristic compact, mainly α-helical structures. The C-terminal sequence of Act c 10.0101 was updated based on our structural and mass spectrometry analysis. Information on proteins’ sequences and structures was used to estimate the risk of cross-reactive reactions between Act c 10.0101 or Pun g 1.0101 and other allergens from this family of proteins. (4) Conclusions: Structural studies indicate a conformational flexibility of allergens from the nsLTP family and suggest that immunoglobulin E binding to some surface regions of these allergens may depend on ligand binding. Both Act c 10.0101 and Pun g 1.0101 are likely to be involved in cross-reactive reactions involving other proteins from the nsLTP family.
An assessment of the impact of extraction and digestion protocols on multiplexed targeted protein quantification by mass spectrometry for egg and milk allergens
The unintentional presence of even trace amounts of certain foods constitutes a major hazard for those who suffer from food allergies. For many food industries, product and raw ingredient surveillance forms part of their risk assessment procedures. This may require the detection of multiple allergens in a wide variety of matrices. Mass spectrometry offers a possible solution for the quantification of multiple allergens in a single analysis. The capability of MS to quantify many peptides from a complex protein digestion is well known. However, a lack of matrix certified reference materials has made the optimisation of extraction and digestion conditions for multiplexed allergen quantification difficult to assess. Here, we report a systematic study, using preliminary screening followed by a Design of Experiments approach, to find the optimal buffer and digestion conditions for detecting milk and egg protein markers in a model processed food matrix. Five of the most commonly used buffers, two chaotropic reagents and two reducing reagents were assessed for the optimal extraction of multiple protein markers. While the choice of background buffer had little impact, the use of chaotropic and reducing reagents showed significant benefits for the extraction of most proteins. A full factorial design experiment was applied to the parameters shown to have a significant impact on protein recovery. These studies suggest that a single optimal set of extraction conditions enabling the quantitative recovery of all proteins is not easily achieved. Therefore, although MS is capable of the simultaneous quantification of many peptides in a single run, greater consideration of protein extraction is required before these are applied for multiplex allergen quantification in food matrices.
The Differential Vertical Distribution of the Airborne Biological Particles Reveals an Atmospheric Reservoir of Microbial Pathogens and Aeroallergens
The most abundant biological particles present in the air are bacteria, fungal propagules and pollen grains. Many of them are proved allergens or even responsible for airborne infectious diseases, which supports the increase of studies in recent years on their composition, diversity, and factors involved in their variability. However, most studies in urban areas are conducted close to ground level and a factor such as height is rarely taken into account. Thus, the information about how the composition of biological particles changes with this variable is scarce. Here, we examined the differential distribution of bacteria, fungi, and plants at four altitudes (up to ~ 250 m) in a metropolitan area using high-throughput DNA sequencing. Most taxa were present at all levels (common taxa). However, a transitional layer between 80 and 150 m seemed to affect the scattering of these bioaerosols. Taxa not present at all altitudes (non-common) showed an upward tendency of diversity for bacteria and plants with height, while the opposite trend was observed for fungi. Certain patterns were observed for fungi and specific plant genera, while bacterial taxa showed a more arbitrary distribution and no patterns were found. We detected a wide variety of aeroallergens and potential pathogens at all heights, which summed a substantial portion of the total abundance for fungi and plants. We also identified potential connections between the biological particles based on their abundances across the vertical section.