Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
226
result(s) for
"Amino Acid Oxidoreductases - antagonists "
Sort by:
Allosteric inhibition of lysyl oxidase–like-2 impedes the development of a pathologic microenvironment
by
Tsai, Daniel
,
Rodriguez, Hector M
,
Oyasu, Miho
in
631/154/436/2388
,
631/67/327
,
692/699/1503/1607/1605
2010
Pathologically altered stromas are a common contributing factor to cancer progression and fibrogenesis. This report uncovers the role of LOXL2 in the creation and maintenance of the pathological microenvironment of human cancers and fibrotic diseases and presents the development of a LOXL2-specific antibody that shows therapeutic activity in tumor as well as lung and liver fibrosis models.
We have identified a new role for the matrix enzyme lysyl oxidase–like-2 (LOXL2) in the creation and maintenance of the pathologic microenvironment of cancer and fibrotic disease. Our analysis of biopsies from human tumors and fibrotic lung and liver tissues revealed an increase in LOXL2 in disease-associated stroma and limited expression in healthy tissues. Targeting LOXL2 with an inhibitory monoclonal antibody (AB0023) was efficacious in both primary and metastatic xenograft models of cancer, as well as in liver and lung fibrosis models. Inhibition of LOXL2 resulted in a marked reduction in activated fibroblasts, desmoplasia and endothelial cells, decreased production of growth factors and cytokines and decreased transforming growth factor-β (TGF-β) pathway signaling. AB0023 outperformed the small-molecule lysyl oxidase inhibitor β-aminoproprionitrile. The efficacy and safety of LOXL2-specific AB0023 represents a new therapeutic approach with broad applicability in oncologic and fibrotic diseases.
Journal Article
Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis
2019
Background
Lysyl oxidase-like 4 (LOXL4) has been found to be dysregulated in several human malignancies, including hepatocellular carcinoma (HCC). However, the role of LOXL4 in HCC progression remains largely unclear. In this study, we investigated the clinical significance and biological involvement of LOXL4 in the progression of HCC.
Methods
LOXL4 expression was measured in HCC tissues and cell lines. Overexpression, shRNA-mediated knockdown, recombinant human LOXL4 (rhLOXL4), and deletion mutants were applied to study the function of LOXL4 in HCC. Exosomes derived from HCC cell lines were assessed for the ability to promote cancer progression in standard assays. The effects of LOXL4 on the FAK/Src pathway were examined by western blotting.
Results
LOXL4 was commonly upregulated in HCC tissues and predicted a poor prognosis. Elevated LOXL4 was associated with tumor differentiation, vascular invasion, and tumor-node-metastasis (TNM) stage. Overexpression of LOXL4 promoted, whereas knockdown of LOXL4 inhibited cell migration and invasion of HCC in vitro, and overexpressed LOXL4 promoted intrahepatic and pulmonary metastases of HCC in vivo. Most interestingly, we found that HCC-derived exosomes transferred LOXL4 between HCC cells, and intracellular but not extracellular LOXL4 promoted cell migration by activating the FAK/Src pathway dependent on its amine oxidase activity through a hydrogen peroxide-mediated mechanism. In addition, HCC-derived exosomes transferred LOXL4 to human umbilical vein endothelial cells (HUVECs) though a paracrine mechanism to promote angiogenesis.
Conclusions
Taken together, our data demonstrate a novel function of LOXL4 in tumor metastasis mediated by exosomes through regulation of the FAK/Src pathway and angiogenesis in HCC.
Journal Article
Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis
by
Lai, Chester Y
,
Fabre, Aurelie
,
Kolb, Martin
in
Amino Acid Oxidoreductases - antagonists & inhibitors
,
Amino Acid Oxidoreductases - genetics
,
Amino Acid Oxidoreductases - metabolism
2018
Matrix stiffening with downstream activation of mechanosensitive pathways is strongly implicated in progressive fibrosis; however, pathologic changes in extracellular matrix (ECM) that initiate mechano-homeostasis dysregulation are not defined in human disease. By integrated multiscale biomechanical and biological analyses of idiopathic pulmonary fibrosis lung tissue, we identify that increased tissue stiffness is a function of dysregulated post-translational collagen cross-linking rather than any collagen concentration increase whilst at the nanometre-scale collagen fibrils are structurally and functionally abnormal with increased stiffness, reduced swelling ratio, and reduced diameter. In ex vivo and animal models of lung fibrosis, dual inhibition of lysyl oxidase-like (LOXL) 2 and LOXL3 was sufficient to normalise collagen fibrillogenesis, reduce tissue stiffness, and improve lung function in vivo. Thus, in human fibrosis, altered collagen architecture is a key determinant of abnormal ECM structure-function, and inhibition of pyridinoline cross-linking can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis. Idiopathic pulmonary fibrosis (IPF) is a devastating disease of the lung, which scars the tissue and gradually destroys the organ, ultimately leading to death. It is still unclear what exactly causes this scarring, but it is thought that increasing amounts of proteins in the space surrounding the cells of the lungs, the extracellular matrix, could play a role. These proteins, including collagen, normally form a ‘scaffold’ to stabilize cells, but if they accumulate uncontrollably, they can render tissues rigid. It has been assumed that these changes are a consequence of the disease. However, recent evidence suggests that the increased stiffness itself could stimulate cells to produce even more extracellular matrix, driving the progression of the disease. A better understanding of what exactly causes the tissue to become gradually stiffer may identify new ways to block the progression of IPF. Now, Jones et al. compared measurements of the tissue stiffness and the collagen structure taken from samples of patients with IPF. The results showed that the collagen fibres were faulty and had an abnormal shape. This suggests that these problems, rather than an increased amount of collagen, alter the flexibility of the lung tissue. Jones et al. also found that a specific family of proteins, which helps to connect the collagen fibres, was increased in the tissue of patients with IPF. When these proteins were blocked with a newly developed drug, the collagen structure returned to normal and the stiffness of the tissue decreased. As a consequence, the lung capacity improved. This suggests that treatment approaches that help to maintain a normal collagen structure, may in future prevent the stiffening of the lung tissue and so limit feed-forward mechanisms that drive progressive IPF. Moreover, it indicates that measurements of the structure of collagen rather than the its total concentration could serve as a more suitable indicator for the disease.
Journal Article
Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal
by
Peng, Zhen-Wei
,
Sverdlov, Deanna Y
,
Vaid, Kahini A
in
Amino Acid Oxidoreductases - antagonists & inhibitors
,
Animal models
,
Animals
2017
Background/AimsWe studied the role of lysyl oxidase-like 2 (LOXL2) in collagen crosslinking and hepatic progenitor cell (HPC) differentiation, and the therapeutic efficacy of a LOXL2-blocking monoclonal antibody on liver fibrosis progression/reversal in mice.MethodsAnti-LOXL2 antibody, control antilysyl oxidase antibody or placebo was administered during thioacetamide (TAA)-induced fibrosis progression or during recovery. Therapeutic efficacy in biliary fibrosis was tested in BALB/c.Mdr2−/− and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice. Collagen crosslinking, fibrosis progression and reversal were assessed histologically and biochemically. HPC differentiation was studied in primary EpCAM(+) liver cells in vitro.ResultsLOXL2 was virtually absent from healthy but strongly induced in fibrotic liver, with predominant localisation within fibrotic septa. Delayed anti-LOXL2 treatment of active TAA fibrosis significantly reduced collagen crosslinking and histological signs of bridging fibrosis, with a 53% reduction in morphometric collagen deposition. In established TAA fibrosis, LOXL2 inhibition promoted fibrosis reversal, with enhanced splitting and thinning of fibrotic septa, and a 45% decrease in collagen area at 4 weeks of recovery. In the Mdr2−/− and DDC-induced models of biliary fibrosis, anti-LOXL2 antibody similarly achieved significant antifibrotic efficacy and suppressed the ductular reaction, while hepatocyte replication increased. Blocking LOXL2 had a profound direct effect on primary EpCAM(+) HPC behaviour in vitro, promoting their differentiation towards hepatocytes, while inhibiting ductal cell lineage commitment.ConclusionsLOXL2 mediates collagen crosslinking and fibrotic matrix stabilisation during liver fibrosis, and independently promotes fibrogenic HPC differentiation. By blocking these two convergent profibrotic pathways, therapeutic LOXL2 inhibition attenuates both parenchymal and biliary fibrosis and promotes fibrosis reversal.
Journal Article
Aptamers as Potential Inhibitors of Ethylene Biosynthesis: Identification and In Silico Selection
by
Medrano-Roldán, Hiram
,
Cabrales-Arellano, Cristian Patricia
,
Aparicio-Breceda, Diana Laura
in
Amino Acid Oxidoreductases - antagonists & inhibitors
,
Amino Acid Oxidoreductases - chemistry
,
Amino Acid Oxidoreductases - metabolism
2025
Worldwide, 13.3% of food was wasted in 2020. Ethylene biosynthesis, responsible for fruit ripening, regulates key processes in plant growth and aging. Aptamers are DNA or RNA molecules with the capacity to bind with high affinity and specificity to proteins due to their three-dimensional structure. Therefore, conventional aptamer selection methods are often costly, inefficient, and time-consuming. In this context, in silico molecular docking offers an efficient alternative, enabling the evaluation of binding potential prior to experimental assays. This research identified aptamers with high predicted affinity for the 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) and 1-aminocyclopropane-1-carboxylate oxidase (ACC oxidase) enzymes, essential in ethylene biosynthesis. Using ZDOCK for preliminary screening and HDOCK for refined analysis, aptamer-enzyme interactions were modeled. Aptamers AB451 and ABR6P.1 showed promising binding to ACC synthase, while RO33828 and O0O6O1 were optimal for ACC oxidase. These results represent a computational foundation for the development of aptamer-based inhibitors to potentially delay ripening and reduce postharvest losses. Experimental validation will be required to confirm their inhibitory function.
Journal Article
The small molecule LOXL2 inhibitor SNT-5382 reduces cardiac fibrosis and achieves strong clinical target engagement
2025
Cardiac remodeling involves myocardial hypertrophy and fibrosis which impairs cardiac function and, ultimately, contributes to heart failure (HF) and mortality. Fibrosis largely develops due to excessive matrix deposition and lysyl oxidase(s)-dependent collagen cross-linking. In particular, lysyl oxidase-like 2 (LOXL2) has a critical role in disease progression, representing a promising therapeutic target and rationale for the development of novel, efficacious LOXL2 inhibitor(s). Herein, we describe the pre-clinical validation of a potent small molecule LOXL2 inhibitor as an anti-fibrotic agent, along with its clinical suitability, as high levels of target engagement were sustained in Phase 1 clinical trials while also being well tolerated. We show that LOXL2 concentration is increased in the plasma of patients with HF due to existing hypertension or aortic stenosis. Plasma LOXL2 concentration were correlated with the left ventricular mass index. A novel LOXL2 inhibitor, SNT-5382, was characterised, including
in vitro
and
in vivo
assessment of potency and mode of action, which showed beneficial drug-like properties. Preclinically, SNT-5382 reduced fibrosis and improved cardiac function in a myocardial infarction (MI) mouse model. Phase 1 clinical studies demonstrated a good safety and a PK profile capable of eliciting high and prolonged LOXL2 inhibition following repeated once daily oral dosing. Our findings underscore the pivotal role of LOXL2 in the development of HF. SNT-5382 exhibited potent anti-fibrotic efficacy in a MI model and sustained clinical target engagement.
Trial registration
: Australian New Zealand Clinical Trials Registry identifier: ACTRN12617001564347. Registered 21 November 2017- registered,
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12617001564347
Journal Article
Artificial intelligence accelerates the identification of nature-derived potent LOXL2 inhibitors
2025
The role of LOXL2 in cancer has been widely demonstrated, but current therapies targeting LOXL2 are not yet fully developed. We believe that selective nature-derived inhibition of LOXL2 may provide a better therapeutic approach for the treatment of cancer. Therefore, we adopted a comprehensive approach combining deep learning and traditional computer-aided drug design methods to screen LOXL2 selective inhibitors. Bioactivity and affinity of the potential LOXL2 inhibitors were determined by molecular docking and virtual screening. At the same time, we experimentally tested the effect of potential LOXL2 inhibitors on cancer cells. Validation showed that it could inhibit proliferation and migration, promote apoptosis of CT26 cells, and reduce the expression level of LOXL2 protein. As a result, we identified a potent LOXL2 inhibitor: the natural product Forsythoside A, and demonstrated that Forsythoside A has an inhibitory effect on tumors.
Journal Article
The lysyl oxidase like 2/3 enzymatic inhibitor, PXS‐5153A, reduces crosslinks and ameliorates fibrosis
by
Yow, Tin T.
,
Zhou, Wenbin
,
Findlay, Alison D.
in
Amino Acid Oxidoreductases - antagonists & inhibitors
,
Animals
,
Cancer
2019
Fibrosis is characterized by the excessive deposition of extracellular matrix and crosslinked proteins, in particular collagen and elastin, leading to tissue stiffening and disrupted organ function. Lysyl oxidases are key players during this process, as they initiate collagen crosslinking through the oxidation of the ε‐amino group of lysine or hydroxylysine on collagen side‐chains, which subsequently dimerize to form immature, or trimerize to form mature, collagen crosslinks. The role of LOXL2 in fibrosis and cancer is well documented, however the specific enzymatic function of LOXL2 and LOXL3 during disease is less clear. Herein, we describe the development of PXS‐5153A, a novel mechanism based, fast‐acting, dual LOXL2/LOXL3 inhibitor, which was used to interrogate the role of these enzymes in models of collagen crosslinking and fibrosis. PXS‐5153A dose‐dependently reduced LOXL2‐mediated collagen oxidation and collagen crosslinking in vitro. In two liver fibrosis models, carbon tetrachloride or streptozotocin/high fat diet‐induced, PXS‐5153A reduced disease severity and improved liver function by diminishing collagen content and collagen crosslinks. In myocardial infarction, PXS‐5153A improved cardiac output. Taken together these results demonstrate that, due to their crucial role in collagen crosslinking, inhibition of the enzymatic activities of LOXL2/LOXL3 represents an innovative therapeutic approach for the treatment of fibrosis.
Journal Article
Inhibition of Lysyl Oxidase and Lysyl Oxidase-Like Enzymes Has Tumour-Promoting and Tumour-Suppressing Roles in Experimental Prostate Cancer
2016
Lysyl oxidase (LOX) and LOX-like (LOXL) enzymes are key players in extracellular matrix deposition and maturation. LOX promote tumour progression and metastasis, but it may also have tumour-inhibitory effects. Here we show that orthotopic implantation of rat prostate AT-1 tumour cells increased LOX and LOXLs mRNA expressions in the tumour and in the surrounding non-malignant prostate tissue. Inhibition of LOX enzymes, using Beta-aminopropionitrile (BAPN), initiated before implantation of AT-1 cells, reduced tumour growth. Conversely, treatment that was started after the tumours were established resulted in unaffected or increased tumour growth. Moreover, treatment with BAPN did not suppress the formation of spontaneous lymph node metastases, or lung tumour burden, when tumour cells were injected intravenously. A temporal decrease in collagen fibre content, which is a target for LOX, was observed in tumours and in the tumour-adjacent prostate tissue. This may explain why early BAPN treatment is more effective in inhibiting tumour growth compared to treatment initiated later. Our data suggest that the enzymatic function of the LOX family is context-dependent, with both tumour-suppressing and tumour-promoting properties in prostate cancer. Further investigations are needed to understand the circumstances under which LOX inhibition may be used as a therapeutic target for cancer patients.
Journal Article
LOXL2 Inhibition Paves the Way for Macrophage-Mediated Collagen Degradation in Liver Fibrosis
by
Afratis, Nikolaos A.
,
Havusha-Laufer, Sapir
,
Solomonov, Inna
in
Amino Acid Oxidoreductases - antagonists & inhibitors
,
Animal models
,
Animals
2020
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM) proteins and enzymes, especially fibrillary collagens, and represents a major cause of morbidity and mortality worldwide. Lysyl oxidases (LOXs) drive covalent crosslinking of collagen fibers, thereby promoting stabilization and accumulation of liver fibrosis while limiting its resolution. Here we show in a carbon tetrachloride (CCl
)-induced liver fibrosis murine model that treatment with a novel anti-lysyl oxidase like 2 (LOXL2) neutralizing antibody, which targets extracellular LOXL2, significantly improves fibrosis resolution. LOXL2 inhibition following the onset of fibrosis accelerated and augmented collagen degradation. This was accompanied by increased localization of reparative monocyte-derived macrophages (MoMFs) in the proximity of fibrotic fibers and their representation in the liver. These cells secreted collagenolytic matrix metalloproteinases (MMPs) and, in particular, the membrane-bound MT1-MMP (MMP-14) collagenase. Inducible and selective ablation of infiltrating MoMFs negated the increased \"on-fiber\" accumulation of MMP-14-expressing MoMFs and the accelerated collagenolytic activity observed in the anti-LOXL2-treated mice. Many studies of liver fibrosis focus on preventing the progression of the fibrotic process. In contrast, the therapeutic mechanism of LOXL2 inhibition presented herein aims at reversing existing fibrosis and facilitating endogenous liver regeneration by paving the way for collagenolytic macrophages.
Journal Article