Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
26 result(s) for "Animals, Fossil Arabian Peninsula."
Sort by:
A thousand and one fossils : discoveries in the desert at Al Gharbia, United Arab Emirates = Alf aٍhfهur wa-aٍhfهur : iktishهafهat min al-zaman al-saٍhهiq fهi ٍSaٍhrهa® al-Gharbهiyah, Abهu ٍZaby, al-Imهarهat al-°Arabهiyah al-Muttaٍhidah
\"This book in English and Arabic provides a visual summary of the prehistory of the Arabian Peninsula, describing the plant and animal diversity that existed there some seven million years ago through discoveries by an international team of paleontologists from Germany, France, the United States, and the United Arab Emirates\"--Provided by publisher.
Fossil steroids record the appearance of Demospongiae during the Cryogenian period
The earliest metazoans Chemical fossils discovered in sedimentary rocks in Oman provide the earliest evidence for animal life so far discovered. The fossil steroids — 24-isopropylcholestanes characteristic of sponges of the Demospongiae class — date back 635 million years or more to around the time of the Marinoan glaciation, the last of the immense ice ages at the end of the Neoproterozoic. This suggests that the shallow waters in some late Cryogenian ocean basins contained dissolved oxygen in concentrations sufficient to support simple multicellular organisms at least 100 million years before the rapid diversification of bilaterians during the Cambrian explosion. This paper reports chemical fossils characteristic of sponges that date back at least 635 million years ago, constituting the earliest evidence yet found for animal life. The sponges lived during the Marinoan glaciation, the last of the immense ice ages at the end of the Neoproterozoic. No evidence has been found for animal life during the earlier Sturtian glaciation. The Neoproterozoic era (1,000–542 Myr ago) was an era of climatic extremes and biological evolutionary developments culminating in the emergence of animals (Metazoa) and new ecosystems 1 . Here we show that abundant sedimentary 24-isopropylcholestanes, the hydrocarbon remains of C 30 sterols produced by marine demosponges, record the presence of Metazoa in the geological record before the end of the Marinoan glaciation (∼635 Myr ago). These sterane biomarkers are abundant in all formations of the Huqf Supergroup, South Oman Salt Basin, and, based on a new high-precision geochronology 2 , constitute a continuous 100-Myr-long chemical fossil record of demosponges through the terminal Neoproterozoic and into the Early Cambrian epoch. The demosponge steranes occur in strata that underlie the Marinoan cap carbonate (>635 Myr ago). They currently represent the oldest evidence for animals in the fossil record, and are evidence for animals pre-dating the termination of the Marinoan glaciation. This suggests that shallow shelf waters in some late Cryogenian ocean basins (>635 Myr ago) contained dissolved oxygen in concentrations sufficient to support basal metazoan life at least 100 Myr before the rapid diversification of bilaterians during the Cambrian explosion. Biomarker analysis has yet to reveal any convincing evidence for ancient sponges pre-dating the first globally extensive Neoproterozoic glacial episode (the Sturtian, ∼713 Myr ago in Oman 2 ).
New perspectives on anthropoid origins
Adaptive shifts associated with human origins are brought to light as we examine the human fossil record and study our own genome and that of our closest ape relatives. However, the more ancient roots of many human characteristics are revealed through the study of a broader array of living anthropoids and the increasingly dense fossil record of the earliest anthropoid radiations. Genomic data and fossils of early primates in Asia and Africa clarify relationships among the major clades of primates. Progress in comparative anatomy, genomics, and molecular biology point to key changes in sensory ecology and brain organization that ultimately set the stage for the emergence of the human lineage.
Hominin Dispersal into the Nefud Desert and Middle Palaeolithic Settlement along the Jubbah Palaeolake, Northern Arabia
The Arabian Peninsula is a key region for understanding hominin dispersals and the effect of climate change on prehistoric demography, although little information on these topics is presently available owing to the poor preservation of archaeological sites in this desert environment. Here, we describe the discovery of three stratified and buried archaeological sites in the Nefud Desert, which includes the oldest dated occupation for the region. The stone tool assemblages are identified as a Middle Palaeolithic industry that includes Levallois manufacturing methods and the production of tools on flakes. Hominin occupations correspond with humid periods, particularly Marine Isotope Stages 7 and 5 of the Late Pleistocene. The Middle Palaeolithic occupations were situated along the Jubbah palaeolake-shores, in a grassland setting with some trees. Populations procured different raw materials across the lake region to manufacture stone tools, using the implements to process plants and animals. To reach the Jubbah palaeolake, Middle Palaeolithic populations travelled into the ameliorated Nefud Desert interior, possibly gaining access from multiple directions, either using routes from the north and west (the Levant and the Sinai), the north (the Mesopotamian plains and the Euphrates basin), or the east (the Persian Gulf). The Jubbah stone tool assemblages have their own suite of technological characters, but have types reminiscent of both African Middle Stone Age and Levantine Middle Palaeolithic industries. Comparative inter-regional analysis of core technology indicates morphological similarities with the Levantine Tabun C assemblage, associated with human fossils controversially identified as either Neanderthals or Homo sapiens.
Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary
The Cambrian explosion: Sulphide rises to the occasion Changes in environmental conditions at the Precambrian–Cambrian transition (around 542 million years ago) have been suggested as a possible explanation for the apparent rapid increase in abundance of multicellular organisms known as the 'Cambrian explosion'. The nature of the environmental changes is still a matter of debate, however. Wille et al. now report molybdenum isotope signatures of black shales from two stratigraphically correlated sample sets with a depositional age of about 542 million years. With the help of a box model of the oceanic molybdenum cycle, they find that intense upwelling of hydrogen sulphide-rich deep ocean water best explains the observed early Cambrian molybdenum isotope signal. This suggests that the early Cambrian animal radiation may have been triggered by a major change in ocean circulation, following a long period during which the ocean was stratified, with sulphidic deep water. This paper reports molybdenum isotope signatures of black shales from two stratigraphically correlated sample sets with a depositional age of around 542 million years. The findings suggest that the Early Cambrian animal radiation may have been triggered by a major change in ocean circulation, terminating a long period during which the Proterozoic ocean was stratified, with sulphidic deep water. Animal-like multicellular fossils appeared towards the end of the Precambrian, followed by a rapid increase in the abundance and diversity of fossils during the Early Cambrian period, an event also known as the ‘Cambrian explosion’ 1 , 2 , 3 . Changes in the environmental conditions at the Precambrian/Cambrian transition (about 542 Myr ago) have been suggested as a possible explanation for this event, but are still a matter of debate 1 , 2 , 3 . Here we report molybdenum isotope signatures of black shales from two stratigraphically correlated sample sets with a depositional age of around 542 Myr. We find a transient molybdenum isotope signal immediately after the Precambrian/Cambrian transition. Using a box model of the oceanic molybdenum cycle, we find that intense upwelling of hydrogen sulphide-rich deep ocean water best explains the observed Early Cambrian molybdenum isotope signal. Our findings suggest that the Early Cambrian animal radiation may have been triggered by a major change in ocean circulation, terminating a long period during which the Proterozoic ocean was stratified, with sulphidic deep water.
A Nubian Complex Site from Central Arabia: Implications for Levallois Taxonomy and Human Dispersals during the Upper Pleistocene
Archaeological survey undertaken in central Saudi Arabia has revealed 29 surface sites attributed to the Arabian Middle Paleolithic based on the presence of Levallois blank production methods. Technological analyses on cores retrieved from Al-Kharj 22 have revealed specific reduction modalities used to produce flakes with predetermined shapes. The identified modalities, which are anchored within the greater Levallois concept of core convexity preparation and exploitation, correspond with those utilized during the Middle Stone Age Nubian Complex of northeast Africa and southern Arabia. The discovery of Nubian technology at the Al-Kharj 22 site represents the first appearance of this blank production method in central Arabia. Here we demonstrate how a rigorous use of technological and taxonomic analysis may enable intra-regional comparisons across the Arabian Peninsula. The discovery of Al-Kharj 22 increases the complexity of the Arabian Middle Paleolithic archaeological record and suggests new dynamics of population movements between the southern and central regions of the Peninsula. This study also addresses the dichotomy within Nubian core typology (Types 1 and 2), which was originally defined for African assemblages.
Taphonomy of an excavated striped hyena (Hyaena hyaena) den in Arabia: implications for paleoecology and prehistory
Studies of modern carnivore accumulations of bone (i.e., neo-taphonomy) are crucial for interpreting fossil accumulations in the archaeological and paleontological records. Yet, studies in arid regions have been limited in both number and detailed taphonomic data, prohibiting our understanding of carnivore bone-accumulating and -modifying behavior in dry regions. Here, we present a taphonomic analysis of an impressive carnivore-accumulated bone assemblage from the Umm Jirsan lava tube in the Harrat Khaybar region, Saudi Arabia. The size and composition of the bone accumulation, as well as the presence of hyena skeletal remains and coprolites, suggest that the assemblage was primarily accumulated by striped hyena ( Hyaena hyaena ). Our findings (1) identify potentially useful criteria for distinguishing between accumulations generated by different species of hyenas; (2) emphasize the need for neo-taphonomic studies for capturing the full variation in carnivore bone-accumulating and modifying behavior; (3) suggest that under the right settings, striped hyena accumulations can serve as good proxies for (paleo)ecology and livestock practices; and (4) highlight the potential for future research at Umm Jirsan, as well as at the numerous nearby lava tube systems. We encourage continued neo-taphonomic efforts in regions important in human prehistory, particularly in arid zones, which have received little research attention.
Freshly Excavated Fossil Bones Are Best for Amplification of Ancient DNA
Despite the enormous potential of analyses of ancient DNA for phylogeographic studies of past populations, the impact these analyses, most of which are performed with fossil samples from natural history museum collections, has been limited to some extent by the inefficient recovery of ancient genetic material. Here we show that the standard storage conditions and/or treatments of fossil bones in these collections can be detrimental to DNA survival. Using a quantitative paleogenetic analysis of 247 herbivore fossil bones up to 50,000 years old and originating from 60 different archeological and paleontological contexts, we demonstrate that freshly excavated and nontreated unwashed bones contain six times more DNA and yield twice as many authentic DNA sequences as bones treated with standard procedures. This effect was even more pronounced with bones from one Neolithic site, where only freshly excavated bones yielded results. Finally, we compared the DNA content in the fossil bones of one animal, a ≈3,200-year-old aurochs, excavated in two separate seasons 57 years apart. Whereas the washed museum-stored fossil bones did not permit any DNA amplification, all recently excavated bones yielded authentic aurochs sequences. We established that during the 57 years when the aurochs bones were stored in a collection, at least as much amplifiable DNA was lost as during the previous 3,200 years of burial. This result calls for a revision of the postexcavation treatment of fossil bones to better preserve the genetic heritage of past life forms.
Early guenon from the late Miocene Baynunah Formation, Abu Dhabi, with implications for cercopithecoid biogeography and evolution
A newly discovered fossil monkey (AUH 1321) from the Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates, is important in a number of distinct ways. At ∼6.5–8.0 Ma, it represents the earliest known member of the primate subfamily Cercopithecinae found outside of Africa, and it may also be the earliest cercopithecine in the fossil record. In addition, the fossil appears to represent the earliest member of the cercopithecine tribe Cercopithecini (guenons) to be found anywhere, adding between 2 and 3.5 million y (∼50–70%) to the previous first-appearance datum of the crown guenon clade. It is the only guenon—fossil or extant—known outside the continent of Africa, and it is only the second fossil monkey specimen so far found in the whole of Arabia. This discovery suggests that identifiable crown guenons extend back into the Miocene epoch, thereby refuting hypotheses that they are a recent radiation first appearing in the Pliocene or Pleistocene. Finally, the new monkey is a member of a unique fauna that had dispersed from Africa and southern Asia into Arabia by this time, suggesting that the Arabian Peninsula was a potential filter for cross-continental faunal exchange. Thus, the presence of early cercopithecines on the Arabian Peninsula during the late Miocene reinforces the probability of a cercopithecoid dispersal route out of Africa through southwest Asia before Messinian dispersal routes over the Mediterranean Basin or Straits of Gibraltar.
Darriwilian shallow-marine deposits from the Sultanate of Oman, a poorly known portion of the Arabian margin of Gondwana
The Amdeh Formation is a 3.4 km stack of sparsely fossiliferous quartzites and shales which crops out in the Al Hajar mountains near Muscat. Here we describe the uppermost member (Am5) that can be dated biostratigraphically as Darriwilian and which is the outcrop equivalent, and probably the seaward continuation, of the Saih Nihayda Formation in the Ghaba Salt Basin of northern Oman. The outcrops at Wadi Daiqa and Hayl al Quwasim consist of 690 m of quartzitic sandstones, shales and bivalve-rich shell beds. Trace fossils referable to the Cruziana and Skolithos ichnofacies abound. The member comprises storm-dominated shelf, shoreface and delta deposits. A number of new discoveries have been made in the outcrops: fragments of the arandaspid fish Sacabambaspis, ossicles and moulds of the early disparid crinoid Iocrinus, two new genera of conodont, an occurrence of the rare trinucleid trilobite Yinpanolithus, and palynological and sedimentological evidence of more continuous Floian–Darriwilian deposition than is usual in the region. Sea levels during Middle Ordovician time are estimated to have been 50–200 m above present levels and a wide, low-gradient shelf covered much of Arabia. Similar trace fossils and storm-dominated, micro-tidal, sedimentary rocks occur throughout the region. Small changes of sea level, possibly caused by the growth and melting of polar ice sheets, could lead to substantial seaward or landward shifts of facies belts. The Am5 deposits are thick compared to most equivalents in Arabia implying active subsidence and a ready supply of sediment.