Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2 result(s) for "Aquatic animals Food Juvenile literature."
Sort by:
Freshwater food chains
\"This photo-illustrated book introduces early fluent readers to the relationship between predator and prey in a freshwater environment. Includes glossary and index.\"-- Provided by publisher.
Multiple stressors: modeling the effect of pollution, climate, and predation on viability of a sub‐arctic marine bird
Negative effects of long‐transported pollutants, such as many persistent organic pollutants (POPs), on seabirds and other top predators have been documented for decades. Yet, the concentrations, and hence, the negative impacts of many POPs have recently declined in the Northern Hemisphere. However, organisms are exposed to multiple stressors and the impacts of pollution act in concert with both natural and other anthropogenic stressors. In theory, this means that even sub‐lethal POP concentrations may cause adverse effects if they co‐occur with increased levels of other stressors. We tested the multiple stress hypothesis on common eiders, a marine duck with a northern geographical distribution, by assessing the relative importance of pollution, climate (winter sea surface temperature; SSTw), and egg predation on population dynamics and viability (i.e., extinction risk) using Leslie‐matrix population models. The model was parametrized by estimating reproduction and apparent adult survival using long‐term data from a common eider population in sub‐arctic Europe. Average annual adult survival was 0.80 (coefficient of variation [CV] = 22.00%) and showed a negative, both direct and delayed, relationship with SSTw. Average clutch size was 4.41 eggs (CV = 5.12%) and varied in time showing periods of both positive and negative trends, but showed no relationship with SSTw. We based immature survival on estimates from literature: 0.52 and 0.68 for juveniles and yearlings, respectively. Our model supported the multiple stress hypothesis as changes in a single stressor did not induce extinctions, unless the magnitude of our manipulations was extreme except for egg predation. The effect of pollution was, however, increasingly negative when it co‐occurred with a warming climate and egg predation—and population viability was lowest when all the stressors occurred simultaneously.