Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
592 result(s) for "Aromatase Inhibitors - pharmacology"
Sort by:
Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor–directed therapies
Seventy percent of breast cancers express the estrogen receptor (ER), and agents that target the ER are the mainstay of treatment. However, virtually all people with ER + breast cancer develop resistance to ER-directed agents in the metastatic setting. Beyond mutations in the ER itself, which occur in 25–30% of people treated with aromatase inhibitors 1 – 4 , knowledge about clinical resistance mechanisms remains incomplete. We identified activating HER2 mutations in metastatic biopsies from eight patients with ER + metastatic breast cancer who had developed resistance to aromatase inhibitors, tamoxifen or fulvestrant. Examination of treatment-naive primary tumors in five patients showed no evidence of pre-existing mutations in four of five patients, suggesting that these mutations were acquired under the selective pressure of ER-directed therapy. The HER2 mutations and ER mutations were mutually exclusive, suggesting a distinct mechanism of acquired resistance to ER-directed therapies. In vitro analysis confirmed that the HER2 mutations conferred estrogen independence as well as—in contrast to ER mutations—resistance to tamoxifen, fulvestrant and the CDK4 and CDK6 inhibitor palbociclib. Resistance was overcome by combining ER-directed therapy with the irreversible HER2 kinase inhibitor neratinib. Activating HER2 mutations are shown to confer resistance to ER-directed therapies in patients with ER + metastatic breast cancer. Drug resistance caused by HER2 mutations was overcome by combining ER-directed therapy with a HER2 kinase inhibitor.
Aromatase Inhibitors—Induced Musculoskeletal Disorders: Current Knowledge on Clinical and Molecular Aspects
Aromatase inhibitors (AIs) have radically changed the prognosis of hormone receptor positive breast cancer (BC) in post-menopausal women, and are a mainstay of the adjuvant therapy for BC after surgery in place of, or following, Tamoxifen. However, AIs aren’t side effect-free; frequent adverse events involve the musculoskeletal system, in the form of bone loss, AI-associated arthralgia (AIA) syndrome and autoimmune rheumatic diseases. In this narrative review, we reported the main clinical features of these three detrimental conditions, their influence on therapy adherence, the possible underlying molecular mechanisms and the available pharmacological and non-pharmacological treatments. The best-known form is the AIs-induced osteoporosis, whose molecular pathway and therapeutic possibilities were extensively investigated in the last decade. AIA syndrome is a high prevalent joint pain disorder which often determines a premature discontinuation of the therapy. Several points still need to be clarified, as a universally accepted diagnostic definition, the pathogenetic mechanisms and satisfactory management strategies. The association of AIs therapy with autoimmune diseases is of the utmost interest. The related literature has been recently expanded, but many issues remain to be explored, the first being the molecular mechanisms.
Identification of potential novel aromatase inhibitors as therapeutic strategies against breast cancer: insight into molecular docking, MD simulations and ADMET profiling
Background Breast cancer remains a leading cause of morbidity and mortality in women worldwide. Reports show that overexpression of estrogen and estrogen receptors is a key driver of many breast cancers, and aromatase (CYP19A1) plays a central role in estrogen biosynthesis. Existing aromatase inhibitors such as Letrozole, androstenedione etc., often have side effects and drug resistance issues, hence there is a need for novel inhibitors with improved safety. Methods We retrieved 72 phytochemical compounds from Ricinus communis and compared them against Letrozole via structure-based in silico screening. Ligands were docked to aromatase (PDB ID: 3EQM) using AutoDock Vina in PyRx. Top hits were evaluated for drug-likeness via Lipinski’s rule, and pharmacokinetic/toxicity parameters using SwissADME, admetSAR 2.0, and pkCSM. The binding modes were visualized, and molecular dynamics (MD) simulations (100 ns) with GROMACS were performed to assess stability, complemented by analyses of RMSD, RMSF, radius of gyration, and hydrogen bonds. Results Of the 72 compounds screened, 10 exhibited more negative docking scores than Letrozole’s − 8.3 kcal/mol. Three compounds, including Stigmasterol (− 10.5 kcal/mol), Fucosterol (− 10.2 kcal/mol), and 7-oxo-β-sitosterol (≈ − 9.3 kcal/mol) were selected as top hits. These compounds formed favorable hydrophobic and hydrogen bonding interactions with key active site residues (including MET374, ALA306, TRP224). All three satisfy Lipinski’s criteria and showed favorable ADMET profiles (good absorption, non-carcinogenic, minimal predicted CYP-inhibition). MD trajectories indicated that the complexes remain stable over 100 ns, with RMSD fluctuations within acceptable ranges and consistent hydrogen bonding. Conclusion The three phytochemicals identified from Ricinus communis show promise as novel aromatase inhibitors with superior binding and favorable pharmacokinetic predictions compared to Letrozole. These compounds warrant further in vitro and in vivo study as potential breast cancer therapeutics.
Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer
Aromatase inhibition is an efficient endocrine therapy to block ectopic estrogen production for postmenopausal estrogen receptor (ER)-positive breast cancer patients, but many develop resistance. Here, we show that aromatase inhibitor (AI)-resistant breast tumors display features of enhanced aerobic glycolysis with upregulation of long noncoding RNA (lncRNA) DIO3OS, which correlates with poor prognosis of breast cancer patients on AI therapies. Long-term estrogen deprivation induces DIO3OS expression in ER-positive breast tumor cells, which further enhances aerobic glycolysis and promotes estrogen-independent cell proliferation in vitro and in vivo. Mechanistically, DIO3OS interacts with polypyrimidine tract binding protein 1 (PTBP1) and stabilizes the mRNA of lactate dehydrogenase A (LDHA) by protecting the integrity of its 3’UTR, and subsequently upregulates LDHA expression and activates glycolytic metabolism in AI-resistant breast cancer cells. Our findings highlight the role of lncRNA in regulating the key enzyme of glycolytic metabolism in response to endocrine therapies and the potential of targeting DIO3OS to reverse AI resistance in ER-positive breast cancer. While aromatase inhibitors (AI) are an effective treatment for patients with estrogen receptor positive breast cancer, resistance presents a major obstacle. Here, the authors identify DIO3OS, a long noncoding RNA, as a driver of AI-resistance in breast cancer through the enhancement of aerobic glycolysis.
Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive breast cancer (FAKTION): a multicentre, randomised, controlled, phase 2 trial
Capivasertib (AZD5363) is a potent selective oral inhibitor of all three isoforms of the serine/threonine kinase AKT. The FAKTION trial investigated whether the addition of capivasertib to fulvestrant improved progression-free survival in patients with aromatase inhibitor-resistant advanced breast cancer. In this randomised, double-blind, placebo-controlled, phase 2 trial, postmenopausal women aged at least 18 years with an Eastern Cooperative Oncology Group performance status of 0–2 and oestrogen receptor-positive, HER2-negative, metastatic or locally advanced inoperable breast cancer who had relapsed or progressed on an aromatase inhibitor were recruited from 19 hospitals in the UK. Enrolled participants were randomly assigned (1:1) to receive intramuscular fulvestrant 500 mg (day 1) every 28 days (plus a loading dose on day 15 of cycle 1) with either capivasertib 400 mg or matching placebo, orally twice daily on an intermittent weekly schedule of 4 days on and 3 days off (starting on cycle 1 day 15) until disease progression, unacceptable toxicity, loss to follow-up, or withdrawal of consent. Treatment allocation was done using an interactive web-response system using a minimisation method (with a 20% random element) and the following minimisation factors: measurable or non-measurable disease, primary or secondary aromatase inhibitor resistance, PIK3CA status, and PTEN status. The primary endpoint was progression-free survival with a one-sided alpha of 0·20. Analyses were done by intention to treat. Recruitment is complete, and the trial is in follow-up. This trial is registered with ClinicalTrials.gov, number NCT01992952. Between March 16, 2015, and March 6, 2018, 183 patients were screened for eligibility, of whom 140 (76%) were eligible and were randomly assigned to receive fulvestrant plus capivasertib (n=69) or fulvestrant plus placebo (n=71). Median follow-up for progression-free survival was 4·9 months (IQR 1·6–11·6). At the time of primary analysis for progression-free survival (Jan 30, 2019), 112 progression-free survival events had occurred, 49 (71%) in 69 patients in the capivasertib group compared with 63 (89%) of 71 in the placebo group. Median progression-free survival was 10·3 months (95% CI 5·0–13·2) in the capivasertib group versus 4·8 months (3·1–7·7) in the placebo group, giving an unadjusted hazard ratio (HR) of 0·58 (95% CI 0·39–0·84) in favour of the capivasertib group (two-sided p=0·0044; one-sided log rank test p=0·0018). The most common grade 3–4 adverse events were hypertension (22 [32%] of 69 patients in the capivasertib group vs 17 [24%] of 71 in the placebo group), diarrhoea (ten [14%] vs three [4%]), rash (14 [20%] vs 0), infection (four [6%] vs two [3%]), and fatigue (one [1%] vs three [4%]). Serious adverse reactions occurred only in the capivasertib group, and were acute kidney injury (two), diarrhoea (three), rash (two), hyperglycaemia (one), loss of consciousness (one), sepsis (one), and vomiting (one). One death, due to atypical pulmonary infection, was assessed as possibly related to capivasertib treatment. One further death in the capivasertib group had an unknown cause; all remaining deaths in both groups (19 in the capivasertib group and 31 in the placebo group) were disease related. Progression-free survival was significantly longer in participants who received capivasertib than in those who received placebo. The combination of capivasertib and fulvestrant warrants further investigation in phase 3 trials. AstraZeneca and Cancer Research UK.
Association between Polycystic Ovary Syndrome and Gut Microbiota
Polycystic ovary syndrome (PCOS) is the most frequent endocrinopathy in women of reproductive age. It is difficult to treat PCOS because of its complex etiology and pathogenesis. Here, we characterized the roles of gut microbiota on the pathogenesis and treatments in letrozole (a nonsteroidal aromatase inhibitor) induced PCOS rat model. Changes in estrous cycles, hormonal levels, ovarian morphology and gut microbiota by PCR-DGGE and real-time PCR were determined. The results showed that PCOS rats displayed abnormal estrous cycles with increasing androgen biosynthesis and exhibited multiple large cysts with diminished granulosa layers in ovarian tissues. Meanwhile, the composition of gut microbiota in letrozole-treated rats was different from that in the controls. Lactobacillus, Ruminococcus and Clostridium were lower while Prevotella was higher in PCOS rats when compared with control rats. After treating PCOS rats with Lactobacillus and fecal microbiota transplantation (FMT) from healthy rats, it was found that the estrous cycles were improved in all 8 rats in FMT group, and in 6 of the 8 rats in Lactobacillus transplantation group with decreasing androgen biosynthesis. Their ovarian morphologies normalized. The composition of gut microbiota restored in both FMT and Lactobacillus treated groups with increasing of Lactobacillus and Clostridium, and decreasing of Prevotella. These results indicated that dysbiosis of gut microbiota was associated with the pathogenesis of PCOS. Microbiota interventions through FMT and Lactobacillus transplantation were beneficial for the treatments of PCOS rats.
Switching from Aromatase Inhibitors to Dual Targeting Flavonoid-Based Compounds for Breast Cancer Treatment
Despite the significant outcomes attained by scientific research, breast cancer (BC) still represents the second leading cause of death in women. Estrogen receptor-positive (ER+) BC accounts for the majority of diagnosed BCs, highlighting the disruption of estrogenic signalling as target for first-line treatment. This goal is presently pursued by inhibiting aromatase (AR) enzyme or by modulating Estrogen Receptor (ER) α. An appealing strategy for fighting BC and reducing side effects and resistance issues may lie in the design of multifunctional compounds able to simultaneously target AR and ER. In this paper, previously reported flavonoid-related potent AR inhibitors were suitably modified with the aim of also targeting ERα. As a result, homoisoflavone derivatives 3b and 4a emerged as well-balanced submicromolar dual acting compounds. An extensive computational study was then performed to gain insights into the interactions the best compounds established with the two targets. This study highlighted the feasibility of switching from single-target compounds to balanced dual-acting agents, confirming that a multi-target approach may represent a valid therapeutic option to counteract ER+ BC. The homoisoflavone core emerged as a valuable natural-inspired scaffold for the design of multifunctional compounds.
Ribociclib: First Global Approval
Ribociclib is an oral, small-molecule inhibitor of cyclin-dependent kinase (CDK) 4 and 6 that is under development by Novartis for the treatment of cancer. CDKs play an important role in cell cycle progression and cellular proliferation, and inhibition of these kinases with ribociclib results in G1 phase cell-cycle arrest. Ribociclib, in combination with an aromatase inhibitor, was recently approved in the USA for the first-line treatment of advanced breast cancer and has been submitted for approval in the EU for this indication. Ribociclib is undergoing further phase III investigations in breast cancer and is being evaluated in phase I or II trials for various solid tumour types and haematological malignancies. This article summarizes the milestones in the development of ribociclib leading to this first global approval for use as initial endocrine-based therapy for the treatment of postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer.
Genomics and Drug Response
This article reviews recent pharmacogenetic and pharmacogenomic advances and discusses how such advances are reflected in the labeling of drugs. Pharmacogenomics is the study of the role of inherited and acquired genetic variation in drug response. 1 Clinically relevant pharmacogenetic examples, mainly involving drug metabolism, have been known for decades, but recently, the field of pharmacogenetics has evolved into “pharmacogenomics,” involving a shift from a focus on individual candidate genes to genomewide association studies. Such studies are based on a rapid scan of markers across the genome of persons affected by a particular disorder or drug-response phenotype and persons who are not affected, with tests for association that compare genetic variation in a case–control setting. 2 An example is provided in this . . .
Anti-estrogenic and anti-aromatase activities of citrus peels major compounds in breast cancer
Estrogen signaling is crucial for breast cancer initiation and progression. Endocrine-based therapies comprising estrogen receptor (ER) modulators and aromatase inhibitors remain the mainstay of treatment. This study aimed at investigating the antitumor potential of the most potent compounds in citrus peels on breast cancer by exploring their anti-estrogenic and anti-aromatase activities. The ethanolic extract of different varieties of citrus peels along with eight isolated flavonoids were screened against estrogen-dependent breast cancer cell lines besides normal cells for evaluating their safety profile. Naringenin, naringin and quercetin demonstrated the lowest IC 50s and were therefore selected for further assays. In silico molecular modeling against ER and aromatase was performed for the three compounds. In vivo estrogenic and anti-estrogenic assays confirmed an anti-estrogenic activity for the isolates. Moreover, naringenin, naringin and quercetin demonstrated in vitro inhibitory potential against aromatase enzyme along with anticancer potential in vivo, as evidenced by decreased tumor volumes. Reduction in aromatase levels in solid tumors was also observed in treated groups. Overall, this study suggests an antitumor potential for naringenin, naringin and quercetin isolated from citrus peels in breast cancer via possible modulation of estrogen signaling and aromatase inhibition suggesting their use in pre- and post-menopausal breast cancer patients, respectively.