Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,189
result(s) for
"Atrial Fibrillation - pathology"
Sort by:
Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics
by
Tousoulis, Dimitris
,
Antonopoulos, Alexios S.
,
Theofilis, Panagiotis
in
Atrial Fibrillation - economics
,
Atrial Fibrillation - genetics
,
Atrial Fibrillation - metabolism
2021
Atrial fibrillation (AF) is the most frequent arrhythmia managed in clinical practice, and it is linked to an increased risk of death, stroke, and peripheral embolism. The Global Burden of Disease shows that the estimated prevalence of AF is up to 33.5 million patients. So far, successful therapeutic techniques have been implemented, with a high health-care cost burden. As a result, identifying modifiable risk factors for AF and suitable preventive measures may play a significant role in enhancing community health and lowering health-care system expenditures. Several mechanisms, including electrical and structural remodeling of atrial tissue, have been proposed to contribute to the development of AF. This review article discusses the predisposing factors in AF including the different pathogenic mechanisms, sedentary lifestyle, and dietary habits, as well as the potential genetic burden.
Journal Article
Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets
by
Theofilis, Panagiotis
,
Antoniadis, Antonios P.
,
Korantzopoulos, Panagiotis
in
Abnormalities
,
Agonists
,
Animals
2025
Atrial fibrosis is a hallmark of atrial cardiomyopathy and plays a pivotal role in the pathogenesis of atrial fibrillation (AF), contributing to its onset and progression. The mechanisms underlying atrial fibrosis are multifaceted, involving stretch-induced fibroblast activation, oxidative stress, inflammation, and coagulation pathways. Variations in fibrosis types—reactive and replacement fibrosis—are influenced by patient-specific factors such as age, sex, and comorbidities, complicating therapeutic approaches. The heterogeneity of fibrosis leads to distinct electrophysiological abnormalities that promote AF via reentrant activity and enhanced automaticity mechanisms. Despite advancements in imaging, such as late gadolinium enhancement CMR and electroanatomical mapping, challenges in accurately quantifying fibrosis persist. Emerging therapeutic strategies include antifibrotic agents targeting the renin–angiotensin–aldosterone system, novel pathways like TGF-β signaling, and cardio-metabolic drugs like SGLT2 inhibitors and GLP-1 receptor agonists. Innovative interventions, including microRNA modulation and lipid nanoparticle-based therapies, show promise but require validation. Knowledge gaps remain in correlating clinical outcomes with fibrosis patterns and optimizing diagnostic tools. Future research should focus on precise phenotyping, integrating advanced imaging with molecular biomarkers, and conducting robust trials to evaluate antifibrotic therapies’ efficacy in reducing AF burden and related complications.
Journal Article
Incidence of atrial fibrillation in different major cancer subtypes: a Nationwide population-based 12 year follow up study
by
Gislason, Gunnar H.
,
Carlson, Nicholas
,
Lock-Hansen, Morten
in
Adolescent
,
Adult
,
Age Factors
2019
Background
The prevalence of both atrial fibrillation (AF) and malignancies are increasing in the elderly, but incidences of new onset AF in different cancer subtypes are not well described.The objectives of this study were therefore to determine the incidence of AF in different cancer subtypes and to examine the association of cancer and future AF.
Methods
Using national databases, the Danish general population was followed from 2000 until 2012. Every individual aged > 18 years and with no history of cancer or AF prior to study start was included. Incidence rates of new onset AF were identified and incidence rate ratios (IRRs) of AF in cancer patients were calculated in an adjusted Poisson regression model.
Results
A total of 4,324,545 individuals were included in the study. Cancer was diagnosed in 316,040 patients. The median age of the cancer population was 67.0 year and 51.5% were females. Incidences of AF were increased in all subtypes of cancer. For overall cancer, the incidence was 17.4 per 1000 person years (PY) vs 3.7 per 1000 PY in the general population and the difference increased with age. The covariate adjusted IRR for AF in overall cancer was 1.46 (95% confidence interval (CI) 1.44–1.48). The strength of the association declined with time from cancer diagnosis (IRR
0-90days
= 3.41 (3.29–3.54), (IRR-
180 days-1 year
= 1.57 (CI 1.50–1.64) and (IRR
2–5 years
= 1.12 (CI 1.09–1.15).
Conclusions
In this nationwide cohort study we observed that all major cancer subtypes were associated with an increased incidence of AF. Further, cancer and AF might be independently associated.
Journal Article
LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation
2019
Background
Long non-coding RNAs (lncRNA) plasmacytoma variant translocation 1 (PVT1) has been shown to be associated with liver fibrosis. Nevertheless, the role of PVT1 in atrial fibrosis remains undefined. This study aims to elucidate the pathophysiological role of lncRNA PVT1 in the regulation of atrial fibrosis and to explore the underlying mechanism.
Methods
Expression of PVT1, miR-128-sp, and Sp1 were examined in human atrial muscle tissues and angiotensin-II (Ang-II)-induced human atrial fibroblasts. Furthermore, the role of PVT1 in regulating atrial fibrosis in Ang-II-treated human atrial fibroblasts and Ang-II-induced atrial fibrosis in mice was investigated. Moreover, the interaction among PVT1, miR-128-3p, and Sp1 were examined using bioinformatics, expression correlation analysis, gain- or loss-of-function assays, RIP assays, and luciferase reporter assays. The involvement of transforming growth factor beta 1 (TGF-β1)/Smad pathway in this process was also explored.
Results
PVT1 was increased in atrial muscle tissues from AF patients and positively with collagen I and collagen III. In vitro assay revealed that PVT1 overexpression facilitated the Ang-II-induced atrial fibroblasts proliferation, collagen production, and TGF-β1/Smad signaling activation, whereas PVT1 knockdown caused the opposite effect. In vivo assay further confirmed that PVT1 knockdown attenuated the Ang-II-induced mouse atrial fibrosis. Mechanically, PVT1 acted as a sponge for miR-128-3p to facilitate Sp1 expression, thereby activating the TGF-β1/Smad signaling pathway.
Conclusion
LncRNA PVT1 promotes atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation.
Journal Article
Atrial‐like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial‐selective pharmacology
by
Verkerk, Arie O
,
Schwach, Verena
,
El‐Haou, Said
in
Action potential
,
Animal models
,
Arrhythmia
2015
Drugs targeting atrial‐specific ion channels, K
v
1.5 or K
ir
3.1/3.4, are being developed as new therapeutic strategies for atrial fibrillation. However, current preclinical studies carried out in non‐cardiac cell lines or animal models may not accurately represent the physiology of a human cardiomyocyte (CM). In the current study, we tested whether human embryonic stem cell (hESC)‐derived atrial CMs could predict atrial selectivity of pharmacological compounds. By modulating retinoic acid signaling during hESC differentiation, we generated atrial‐like (hESC‐atrial) and ventricular‐like (hESC‐ventricular) CMs. We found the expression of atrial‐specific ion channel genes,
KCNA5
(encoding Kv1.5) and
KCNJ3
(encoding K
ir
3.1), in hESC‐atrial CMs and further demonstrated that these ion channel genes are regulated by COUP‐TF transcription factors. Moreover, in response to multiple ion channel blocker, vernakalant, and K
v
1.5 blocker, XEN‐D0101, hESC‐atrial but not hESC‐ventricular CMs showed action potential (AP) prolongation due to a reduction in early repolarization. In hESC‐atrial CMs, XEN‐R0703, a novel K
ir
3.1/3.4 blocker restored the AP shortening caused by CCh. Neither CCh nor XEN‐R0703 had an effect on hESC‐ventricular CMs. In summary, we demonstrate that hESC‐atrial CMs are a robust model for pre‐clinical testing to assess atrial selectivity of novel antiarrhythmic drugs.
Synopsis
Newly generated human embryonic stem cell‐derived atrial‐like cardiomyocytes resemble human atrial cardiomyocytes and prove to be a valuable model for pre‐clinical drug screenings to identify effective atrial‐selective compounds against atrial fibrillation.
Exogenous addition of retinoic acid drives differentiating human embryonic stem cells towards atrial‐like cardiomyocytes.
COUP‐TFI and COUP‐TFII are induced during atrial differentiation.
COUP‐TF transcription factors regulate atrial‐specific ion channel genes.
hESC‐atrial CMs respond to drugs targeting atrial‐selective ion channels.
Graphical Abstract
Newly generated human embryonic stem cell‐derived atrial‐like cardiomyocytes resemble human atrial cardiomyocytes and prove to be a valuable model for pre‐clinical drug screenings to identify effective atrial‐selective compounds against atrial fibrillation.
Journal Article
Modulation of NOX2 causes obesity-mediated atrial fibrillation
2024
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.
Journal Article
Left atrial reservoir strain is a marker of atrial fibrotic remodeling in patients undergoing cardiovascular surgery: Analysis of gene expression
2024
Left atrial strain (LAS) measured by two-dimensional speckle tracking echocardiography (2DSTE) is considered to be a marker of LA structural remodeling, but it remains unsettled. We investigated the potential usefulness and clinical relevance of LAS to detect atrial remodeling including fibrosis by analyzing gene expression in cardiovascular surgery patients. Preoperative 2DSTE was performed in 131 patients (92 patients with sinus rhythm [SR] patients including paroxysmal AF [PAF], 39 atrial fibrillation [AF]) undergoing cardiovascular surgery. Atrial samples were obtained from the left atrial appendages, and mRNA expression level was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) in 59 cases (24 PAF, 35 AF). Mean value of left atrial reservoir strain (mLASr) correlated with left atrial volume index (LAVI), and left atrial conduit strain (mLAScd). mLASr also correlated with left atrial contractile strain (mLASct) in SR patients including PAF. mLASr was significantly lower, and LAVI was higher, in the AF group, compared with SR patients including PAF. The expression of COL1A1 mRNA encoding collagen type I α1 significantly increased in AF patients (p = 0.031). mLASr negatively correlated with COL1A1 expression level, and multivariate regression analysis showed that mLASr was an independent predictor of atrial COL1A1 expression level, even after adjusting for age, sex, and BMI. But, neither mLAScd / mLASct nor LAVI (bp) correlated with COL1A1 gene expression. The expression level of COL1A1 mRNA strongly correlated with ECM-related genes (COL3A1, FN1). It also correlated ECM degradation-related genes (MMP2, TIMP1, and TIMP2), pro-fibrogenic cytokines (TGFB1 encoding TGFβ1, END1, PDGFD, CTGF), oxidant stress-related genes (NOX2, NOX4), ACE, inflammation-related genes (NLRP, IL1B, MCP-1), and apoptosis (BAX). Among the fibrosis-related genes examined, univariable regression analysis showed that log (COL1A1) was associated with log (TGFB1) (adjusted R
2
= 0.685, p<0.001), log (NOX4) (adjusted R
2
= 0.622, p<0.001), log (NOX2) (adjusted R
2
= 0.611, p<0.001), suggesting that TGFB1 and NOX4 was the potent independent determinants of COL1A1 expression level. mLASr negatively correlated with the ECM-related genes, and fibrosis-related gene expression level including TGFB1, NOX2, and NLRP3 in PAF patients. PAF patients with low mLASr had higher expression of the fibrosis-related gene expression, compared with those with high mLASr. These results suggest that LASr correlates with atrial COL1A1 gene expression associated with fibrosis-related gene expression. Patients with low LASr exhibit increased atrial fibrosis-related gene expression, even those with PAF, highlighting the utility of LAS as a marker for LA fibrosis in cardiovascular surgery patients.
Journal Article
Macrophage-mediated IL-6 signaling drives ryanodine receptor–2 calcium leak in postoperative atrial fibrillation
by
Zhao, Shuai
,
Aguilar-Sanchez, Yuriana
,
Shen, Ying H.
in
Animals
,
Atrial fibrillation
,
Atrial Fibrillation - etiology
2025
Postoperative atrial fibrillation (poAF) is AF occurring days after surgery, with a prevalence of 33% among patients undergoing open-heart surgery. The degree of postoperative inflammation correlates with poAF risk, but less is known about the cellular and molecular mechanisms driving postoperative atrial arrhythmogenesis. We performed single-cell RNA-seq comparing atrial nonmyocytes from mice with and without poAF, which revealed infiltrating CCR2+ macrophages to be the most altered cell type. Pseudotime trajectory analyses identified Il-6 as a gene of interest driving in macrophages, which we confirmed in pericardial fluid collected from human patients after cardiac surgery. Indeed, macrophage depletion and macrophage-specific Il6ra conditional knockout (cKO) prevented poAF in mice. Downstream STAT3 inhibition with TTI-101 and cardiomyocyte-specific Stat3 cKO rescued poAF, indicating a proarrhythmogenic role of STAT3 in poAF development. Confocal imaging in isolated atrial cardiomyocytes (ACMs) uncovered what we believe to be a novel link between STAT3 and CaMKII-mediated ryanodine receptor-2 (RyR2)-Ser(S)2814 phosphorylation. Indeed, nonphosphorylatable RyR2S2814A mice were protected from poAF, and CaMKII inhibition prevented arrhythmogenic Ca2+ mishandling in ACMs from mice with poAF. Altogether, we provide multiomic, biochemical, and functional evidence from mice and humans that IL-6-STAT3-CaMKII signaling driven by infiltrating atrial macrophages is a pivotal driver of poAF, which portends therapeutic utility for poAF prevention.
Journal Article
Virtual Electrophysiological Study of Atrial Fibrillation in Fibrotic Remodeling
by
Trayanova, Natalia A.
,
McDowell, Kathleen S.
,
Zahid, Sohail
in
Ablation
,
Ablation (Surgery)
,
Aged
2015
Research has indicated that atrial fibrillation (AF) ablation failure is related to the presence of atrial fibrosis. However it remains unclear whether this information can be successfully used in predicting the optimal ablation targets for AF termination. We aimed to provide a proof-of-concept that patient-specific virtual electrophysiological study that combines i) atrial structure and fibrosis distribution from clinical MRI and ii) modeling of atrial electrophysiology, could be used to predict: (1) how fibrosis distribution determines the locations from which paced beats degrade into AF; (2) the dynamic behavior of persistent AF rotors; and (3) the optimal ablation targets in each patient. Four MRI-based patient-specific models of fibrotic left atria were generated, ranging in fibrosis amount. Virtual electrophysiological studies were performed in these models, and where AF was inducible, the dynamics of AF were used to determine the ablation locations that render AF non-inducible. In 2 of the 4 models patient-specific models AF was induced; in these models the distance between a given pacing location and the closest fibrotic region determined whether AF was inducible from that particular location, with only the mid-range distances resulting in arrhythmia. Phase singularities of persistent rotors were found to move within restricted regions of tissue, which were independent of the pacing location from which AF was induced. Electrophysiological sensitivity analysis demonstrated that these regions changed little with variations in electrophysiological parameters. Patient-specific distribution of fibrosis was thus found to be a critical component of AF initiation and maintenance. When the restricted regions encompassing the meander of the persistent phase singularities were modeled as ablation lesions, AF could no longer be induced. The study demonstrates that a patient-specific modeling approach to identify non-invasively AF ablation targets prior to the clinical procedure is feasible.
Journal Article