Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
150 result(s) for "Beta Rhythm - drug effects"
Sort by:
Developmental trajectories of EEG aperiodic and periodic components in children 2–44 months of age
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2–44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Developmental changes in periodic peaks include (1) the presence and then absence of a 9-10 Hz alpha peak between 2-6 months, (2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and (3) the emergence of a low beta peak (12-20 Hz) in some infants after six months of age. We hypothesized that the emergence of the low beta peak may reflect maturation of thalamocortical network development. Infant anesthesia studies observe that GABA-modulating anesthetics do not induce thalamocortical mediated frontal alpha coherence until 10-12 months of age. Using a small cohort of infants ( n  = 23) with EEG before and during GABA-modulating anesthesia, we provide preliminary evidence that infants with a low beta peak have higher anesthesia-induced alpha coherence compared to those without a low beta peak. Using longitudinal EEG data from 592 infants and toddlers, the authors identify age-dependent nonlinear changes in periodic alpha and beta peaks suggestive of distinct milestones in early brain maturation, including thalamocortical network development.
Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations
Βeta oscillatory activity (human: 13–35 Hz; primate: 8–24 Hz) is pervasive within the cortex and basal ganglia. Studies in Parkinson’s disease patients and animal models suggest that beta-power increases with dopamine depletion. However, the exact relationship between oscillatory power, frequency and dopamine tone remains unclear. We recorded neural activity in the cortex and basal ganglia of healthy non-human primates while acutely and chronically up- and down-modulating dopamine levels. We assessed changes in beta oscillations in patients with Parkinson’s following acute and chronic changes in dopamine tone. Here we show beta oscillation frequency is strongly coupled with dopamine tone in both monkeys and humans. Power, coherence between single-units and local field potentials (LFP), spike-LFP phase-locking, and phase-amplitude coupling are not systematically regulated by dopamine levels. These results demonstrate that beta frequency is a key property of pathological oscillations in cortical and basal ganglia networks. Dopamine tone modulation generates changes in beta oscillation physiology. Here the authors show beta frequency, and not power, coherence, phase-locking, or PAC is monotonically linked to dopamine tone and is likely the key property of pathological oscillations in cortical and basal ganglia networks.
Striatal origin of the pathologic beta oscillations in Parkinson's disease
Enhanced oscillations at beta frequencies (8–30 Hz) are a signature neural dynamic pathology in the basal ganglia and cortex of Parkinson's disease patients. The mechanisms underlying these pathological beta oscillations remain elusive. Here, using mathematical models, we find that robust beta oscillations can emerge from inhibitory interactions between striatal medium spiny neurons. The interaction of the synaptic GABAa currents and the intrinsic membrane M-current promotes population oscillations in the beta frequency range. Increased levels of cholinergic drive, a condition relevant to the parkinsonian striatum, lead to enhanced beta oscillations in the striatal model. We show experimentally that direct infusion of the cholinergic agonist carbachol into the striatum, but not into the neighboring cortex, of the awake, normal rodent induces prominent beta frequency oscillations in the local field potential. These results provide evidence for amplification of normal striatal network dynamics as a mechanism responsible for the enhanced beta frequency oscillations in Parkinson's disease.
The effects of elevated endogenous GABA levels on movement-related network oscillations
The EEG/MEG signal is generated primarily by the summation of the post-synaptic potentials of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons and cortical oscillations are thought to be dependent on the balance of excitation and inhibition between these cell types. To investigate the dependence of movement-related cortical oscillations on excitation–inhibition balance, we pharmacologically manipulated the GABA system using tiagabine, which blocks GABA Transporter 1(GAT-1), the GABA uptake transporter and increases endogenous GABA activity. In a blinded, placebo-controlled, crossover design, in 15 healthy participants we administered either 15mg of tiagabine or a placebo. We recorded whole-head magnetoencephalograms, while the participants performed a movement task, prior to, one hour post, three hour post and five hour post tiagabine ingestion. Using time-frequency analysis of beamformer source reconstructions, we quantified the baseline level of beta activity (15–30Hz), the post-movement beta rebound (PMBR), beta event-related desynchronisation (beta-ERD) and movement-related gamma synchronisation (MRGS) (60–90Hz). Our results demonstrated that tiagabine, and hence elevated endogenous GABA levels causes, an elevation of baseline beta power, enhanced beta-ERD and reduced PMBR, but no modulation of MRGS. Comparing our results to recent literature (Hall et al., 2011) we suggest that beta-ERD may be a GABAA receptor mediated process while PMBR may be GABAB receptor mediated. ► Recorded MEG during a movement task before and after tiagabine or placebo ► Tiagabine elevates the activity of endogenous GABA. ► Results showed increased beta-ERD, decreased PMBR and no change in MRGS. ► It is suggested that beta-ERD depends on GABAA while PMBR depends on GABAB.
The science of tea’s mood-altering magic
Researchers are discovering how the ingredients in a cup of tea can lift mood, improve focus and perhaps even ward off depression and dementia. Researchers are discovering how the ingredients in a cup of tea can lift mood, improve focus and perhaps even ward off depression and dementia.
GABAergic modulation of beta power enhances motor adaptation in frontotemporal lobar degeneration
INTRODUCTION We examined how abnormal prefrontal neurophysiology and changes in gamma‐aminobutyric acid‐ergic (GABAergic) neurotransmission contribute to behavioral impairments in disorders associated with frontotemporal lobar degeneration (FTLD). METHODS We recorded magnetoencephalography during an adaptive visuomotor task from 11 people with behavioral‐variant frontotemporal dementia, 11 with progressive supranuclear palsy, and 20 age‐matched controls. We used tiagabine, a gamma‐aminobutyric acid (GABA) re‐uptake inhibitor, as a pharmacological probe to assess the role of GABA during motor‐related beta power changes. RESULTS Task impairments were associated with diminished movement‐related beta power. Tiagabine facilitated partial recovery of behavioral impairments and neurophysiology, moderated by executive function, such that the greatest improvements were seen in those with higher cognitive scores. The right prefrontal cortex was revealed as a key site of drug interaction. DISCUSSION Behavioral and neurophysiological deficits can be mitigated by enhancement of GABAergic neurotransmission. Clinical trials are warranted to test for enduring clinical benefits from this restorative‐psychopharmacology strategy. Highlights Event‐related beta power changes during movement can be altered by the GABA reuptake inhibitor, tiagabine. In people with behavioral‐variant frontotemporal dementia and progressive supranuclear palsy, tiagabine enhanced beta modulation and concurrently improved task performance, dependent on baseline cognition, and diagnosis. The effects of the drug suggest a GABA‐dependent beta‐related mechanism that underlies adaptive motor control. Restoring selective deficits in neurotransmission is a potential means to improve behavioral symptoms in patients with dementia.
Average beta burst duration profiles provide a signature of dynamical changes between the ON and OFF medication states in Parkinson’s disease
Parkinson’s disease motor symptoms are associated with an increase in subthalamic nucleus beta band oscillatory power. However, these oscillations are phasic, and there is a growing body of evidence suggesting that beta burst duration may be of critical importance to motor symptoms. This makes insights into the dynamics of beta bursting generation valuable, in particular to refine closed-loop deep brain stimulation in Parkinson’s disease. In this study, we ask the question “Can average burst duration reveal how dynamics change between the ON and OFF medication states?”. Our analysis of local field potentials from the subthalamic nucleus demonstrates using linear surrogates that the system generating beta oscillations is more likely to act in a non-linear regime OFF medication and that the change in a non-linearity measure is correlated with motor impairment. In addition, we pinpoint the simplest dynamical changes that could be responsible for changes in the temporal patterning of beta oscillations between medication states by fitting to data biologically inspired models, and simpler beta envelope models. Finally, we show that the non-linearity can be directly extracted from average burst duration profiles under the assumption of constant noise in envelope models. This reveals that average burst duration profiles provide a window into burst dynamics, which may underlie the success of burst duration as a biomarker. In summary, we demonstrate a relationship between average burst duration profiles, dynamics of the system generating beta oscillations, and motor impairment, which puts us in a better position to understand the pathology and improve therapies such as deep brain stimulation.
The effect of sevoflurane and isoflurane anesthesia on single unit and local field potentials
Volatile general anesthetics are used commonly in adults and children, yet their mechanisms of action are complex and the changes in single unit firing and synaptic activity that underlie the broad decreases in neuronal activity induced by these drugs have not been well characterized. Capturing such changes throughout the anesthesia process is important for comparing the effects of different anesthetics and gaining a better understanding of their mechanisms of action and their impact on different brain regions. Using chronically implanted electrodes in the rabbit somatosensory cortex, we compared the effects of two common general anesthetics, isoflurane, and sevoflurane, on cortical neurons. Single unit activity and local field potentials (LFP) were recorded continuously before and during anesthetic delivery at 1 MAC, as well as during recovery. Our findings show that although isoflurane and sevoflurane belong to the same class of volatile general anesthetics, their effects upon cortical single units and LFP were quite different. Overall, the suppression of neuronal firing was greater and more uniform under sevoflurane. Moreover, the changes in LFP frequency bands suggest that effect of anesthesia upon beta oscillations does not necessarily depend on the level of single unit activity, but rather on the changes in GABA/glutamate neurotransmission induced by each drug.
Coherent Changes in Neural Motor Network Activity during Levodopa-Induced Dyskinesia in a Rat Model of Parkinson’s Disease
Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson’s disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID. Methods: Freely moving rats with unilateral 6-hydroxydopamine hydrobromide (6-OHDA)-induced nigral DA cell lesions were administered a high dose of levodopa for 7 days. Local field potentials (LFPs) and neuronal activity were recorded from electrodes implanted in the motor cortex (MCx), ventromedial nucleus of the thalamus (VM), and substantia nigra pars reticulata nucleus (SNpr). Results: Levodopa reduced the power of beta oscillations (30–36 Hz) associated with bradykinesia in PD rats in three divisions of the motor neural network (MCx, VM, and SNpr) and prompted subsequent emergence of robust high-frequency gamma oscillations (80–120 Hz) in VM and MCx, but not SNpr, LFPs. Gamma oscillations were strongly associated with the occurrence of abnormal involuntary movements (AIMs) and accompanied by an increase in spiking rates in the VM and MCx and enlarged spike-LFP synchronization with cortical gamma oscillations (68% in the VM and 34% in the MCx). In contrast, SNpr LFPs did not exhibit gamma oscillations during LID, and neuronal activity in most recordings (87%) was largely decreased and not synchronized with VM or MCx LFPs. Administration of the antidyskinetic drug 8-hydroxy-2-(dipropylamino)-tetraline hydrobromide (8-OH-DPAT) restored the initial characteristics of LFPs (30–36 Hz oscillations), rates of neuronal activity, and bradykinesia. Inhibition of VM neurons by the gamma-aminobutyric acid (GABA-A)-agonist muscimol during LID eliminated high gamma oscillations in the MCx and VM, but not dyskinesia, suggesting that gamma oscillations are not critical for the expression of AIMs. In contrast, chemogenetic activation of SNpr neurons during LID eliminated both gamma oscillations and dyskinesia. Conclusions: These findings suggest that levodopa treatment leads to crucial reduction of inhibitory control over motor networks due to a large decline in spiking of most SNpr GABAergic projecting neurons, which causes persistent hyperactivity in motor circuits, leading to the appearance of thalamocortical gamma oscillations and LID.
On the human sensorimotor-cortex beta rhythm: Sources and modeling
Cortical oscillations in the beta band (13–35 Hz) are known to be modulated by the GABAergic agonist benzodiazepine. To investigate the mechanisms generating the ≈20-Hz oscillations in the human cortex, we administered benzodiazepines to healthy adults and monitored cortical oscillatory activity by means of magnetoencephalography. Benzodiazepine increased the power and decreased the frequency of beta oscillations over rolandic areas. Minimum current estimates indicated the effect to take place around the hand area of the primary sensorimotor cortex. Given that previous research has identified sources of the beta rhythm in the motor cortex, our results suggest that these same motor-cortex beta sources are modulated by benzodiazepine. To explore the mechanisms underlying the increase in beta power with GABAergic inhibition, we simulated a conductance-based neuronal network comprising excitatory and inhibitory neurons. The model accounts for the increase in the beta power, the widening of the spectral peak, and the slowing down of the rhythms with benzodiazepines, implemented as an increase in GABAergic conductance. We found that an increase in IPSCs onto inhibitory neurons was more important for generating neuronal synchronization in the beta band than an increase in IPSCs onto excitatory pyramidal cells.