Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Blowing dust"
Sort by:
How Many People Were Killed by Windblown Dust Events in the United States?
Windblown dust events, including dust storms and smaller blowing dust events, pose severe risks to public health and transportation safety. In the United States, the statistics of fatalities caused by dust events remains elusive. We developed a new dataset by merging dust fatality data from NOAA Storm Events Database and the Department of Transportation Fatality Analysis Reporting System (FARS). There was a total of 232 deaths from windblown dust events from 2007 to 2017. This number is much larger than that reported by the NOAA Natural Hazard Statistics, which assigns some dust fatalities to high winds and thunderstorms (∼45%) and does not include many events in FARS. Dust fatalities are most frequent over the Southwest, consistent with the spatial distribution of dust storm occurrences. Other high-risk regions include the Colorado Plateau, Columbia Plateau in Washington and Oregon, the High Plains where the disastrous “Dust Bowl” occurred, and the Corn Belt where blowing dust from croplands presents a driving hazard. All six most deadly dust wrecks (three deaths or more) involved semi trucks and five of them were caused by dust storms along Interstate 10. There exist two “hotspots” for dust fatalities: 1) the “Deadliest 10 Miles” between Phoenix and Tucson, Arizona, and 2) Lordsburg Playa in New Mexico, where active dust mitigation projects have been managed by state transportation agencies. In most years, dust events caused comparable life losses to that from other weather hazards such as hurricanes, thunderstorms, lightning, and wildfires. This work presents new evidence that dust is an underappreciated weather hazard.
Impact of Arctic amplification on declining spring dust events in East Asia
Dust aerosols play key roles in affecting regional and global climate through their direct, indirect, and semi-direct effects. Dust events have decreased rapidly since the 1980s in East Asia, particularly over northern China, primarily because of changes in meteorological parameters (e.g. surface wind speed and precipitation). In this study, we found that winter (December–January–February) Arctic amplification associated with weakened temperature gradients along with decreased zonal winds is primarily responsible for the large decline in following spring (March–April–May) dust event occurrences over northern China since the mid-1980s. A dust index was developed for northern China by combining the daily frequency of three types of dust event (dust storm, blowing dust, and floating dust). Using the empirical orthogonal function (EOF) analysis, the first pattern of dust events was obtained for spring dust index anomalies, which accounts for 56.2% of the variability during 1961–2014. Moreover, the enhanced Arctic amplification and stronger Northern Hemisphere annular mode (NAM) in winter can result in the anticyclonic anomalies over Siberia and Mongolia, while cyclonic anomalies over East Europe in spring. These results are significantly correlated with the weakened temperature gradients, increased precipitation and soil moisture, and decreased snow cover extent in the mid-latitude over Northern Hemisphere. Based on the future predictions obtained from the Fifth Climate Models Intercomparison Project (CMIP5), we found that the dust event occurrences may continually decrease over northern China due to the enhanced Arctic amplification in future climate.
Investigation of indoor air quality in university libraries in terms of gaseous and particulate pollutants in Bartin, Turkey
Indoor air quality (IAQ) was investigated in two libraries of Bartin University. Particle matter, TVOC, and CH 2 O were measured simultaneously in different rooms of the libraries. Measurements were made by PCE-RCM 11 measuring device. They were conducted monthly between September 2019 and October 2020 for 2 weeks for each library. TVOC mean concentration was higher than the limit value reported by Seifert et al. ( 1999 ). PM 2.5 and PM 10 concentrations were higher in winter unlike TVOC and CH 2 O concentrations. The indoor seconder blowing dust was detected to be the most important source of particulate matter in the indoor environment. On the other hand, it was thought that the pollutants in the gas phase were affected by indoor and outdoor air temperature, indoor/outdoor air exchange rate, and indoor/outdoor pollutant sources. The parameters changed during the day and in different rooms of the libraries. Pollutants did not pose any hazard on human health, since the calculated HQ and HI ≤ 1 for both exposure groups. The indoor air of the libraries was detected to be slightly polluted and bad according to the IAQI and IEI, respectively. On the other hand, the indoor air quality of the libraries was good in terms of all parameters according to the IAQC.
Spatial and temporal variations in the incidence of dust events over Iran
Dust events are natural hazards that frequently occur in many regions of Iran. The frequency of different categories of dust events over Iran during the period 1987–2016 and the first and second half of this period is analysed using visibility and the present weather data of 44 synoptic stations across Iran. These categories include dust in suspension, blowing dust, dust storm, severe dust storm and widespread dust. The frequency of dust events over Iran is calculated based on analysis of the three-hour-interval dataset of the synoptic stations and represented on a daily basis. Only one report in each day is enough to consider it as a dust event. Results indicated that the frequency of dust in suspension is extremely high over south-western and western Iran, while Zabol in eastern Iran has experienced the most frequent blowing dust and dust storm phenomena. In terms of seasonal variation of dust activity over different regions of Iran, the maximum and minimum frequency of dust events is observed in summer and winter, respectively. The frequency of dust phenomena during 1987–2001 is also compared against that during 2002–2016. It is found that the frequency of dust in suspension in most regions of Iran is significantly increased in the second period, particularly in western and south-western Iran. This implies that transport of dust towards western and south-western Iran has significantly increased in recent years. The frequency of blowing dust is also significantly increased in south-western Iran in 2002–2016 compared to that in 1987–2001, while changes in the frequency of blowing dust over Zabol in these two periods are negligible. The frequency of widespread dust is also analysed, and it is found that it only occurred over western and south-western Iran, with a much higher frequency during 2002–2016 than that of 1987–2001.
An investigation of the effects of sand and dust storms in the North East Sahara Desert on Turkish airports and PM10 values: 7 and 8 April, 2013 events
Between April 7 and April 10, 2013, a cyclone with a value of 995 hPa that developed in the central Mediterranean transported dust from the Sahara Desert towards Turkey. At 13 airports in Turkey, dust haze and widespread dust were seen during different occasions in this period and caused the observation of so-called “Blowing dust events.” This cyclone blew dust towards the Cappadocia airport, and the prevailing visibility decreased to 3800 m, making it the lowest value measured during the transition of this cyclone. In this study, Aviation Routine Weather Report (Metar) and Aviation Selected Special Weather Report (Speci) observations of airports in North Africa and Turkey were evaluated for the period between April 3 and April 11, 2013. With this cyclone the prevailing visibility at Benina Airport in Libya decreased to 50 m on April 6, 2013. This study aims to evaluate long-distance dust transport’s effects on meteorological visibility at airports in Turkey and examine the episodic changes of PM 10 values measured by air quality monitoring stations. Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model outputs were used to determine the trajectories of long-distance dust particles. Powder red, green, and blue (RGB) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images, Cloud–Aerosol LIDAR Infrared Pathfinder Satellite Observations (CALIPSO) images, the Barcelona Supercomputing Center-Dust Regional Atmosphere Model (BSC-DREAM8b) outputs, and Global Forecast System (GFS) synoptic maps were used for analysis. In addition, PM 10 values obtained from air quality monitoring stations were examined. According to the data obtained from the CALIPSO images, the dust concentration on the Eastern Mediterranean reaches up to 5 km. The episodic values obtained from certain air quality measurement stations are Adana 701, Gaziantep 629, Karaman 900, Nevşehir 1343, and Yozgat 782 µg/m 3 on an hourly average.
Long-Term Spatio-Temporal Analysis, Distribution, and Trends of Dust Events over Iran
This study provides a comprehensive evaluation of dust events over Iran, using synoptic data from 286 meteorological stations. The dust events are classified according to synoptic dust codes as suspended dust and others (i.e., blowing dust, dust storms) and based on their intensity with horizontal visibility ≤1, 3, 5, and 10 km. Severe events (visibility ≤ 1 km) of suspended dust (code 06) occurred primarily in the western parts of Iran, while blowing dust events of moderate or severe intensity dominated over the south and eastern Iran, thus revealing a contrasting spatial distribution regarding the type and frequency of dust events. Furthermore, a distinct seasonality is revealed in the number of dust events, since suspended dust maximized in SW Iran from March to July, highly associated with Shamal winds, while blowing dust storms over south and east Iran maximized from April to August. Zabol city, east Iran, and some stations along the coast of the Arabian Sea are highly impacted by this type of dust storm throughout the year. Trend analysis revealed a notable increase in frequency of dust events during the period 1994–2023, particularly in the western part of Iran, mostly attributed to transboundary dust from the Mesopotamian plains. The large increase in dust activity during 1994–2009 was followed by a decrease during the 2010s at many stations, while notable differences were observed in the spatial distribution of the trends in suspended and blowing dust. An inverse correlation between dust events and precipitation anomalies was observed, since years with abnormal precipitation (e.g., 2019; 138% increase) were related to a substantial decrease in dust occurrence. Over an 11-year period, surface dust concentrations exceeded the annual PM10 threshold of 50 µg/m3 on more than 800 days, with maximum concentrations reaching up to 1411 µg/m3. This highlights the urgent need for effective management strategies to mitigate the impacts of dust storms on air quality and public health in Iran.
Episodic Dust Events of Utah’s Wasatch Front and Adjoining Region
Episodic dust events cause hazardous air quality along Utah’s Wasatch Front and dust loading of the snowpack in the adjacent Wasatch Mountains. This paper presents a climatology of episodic dust events of the Wasatch Front and adjoining region that is based on surface weather observations from the Salt Lake City International Airport (KSLC), Geostationary Operational Environmental Satellite (GOES) imagery, and additional meteorological datasets. Dust events at KSLC—defined as any day [mountain standard time (MST)] with at least one report of a dust storm, blowing dust, and/or dust in suspension with a visibility of 10 km or less—average 4.3 per water year (WY: October–September), with considerable interannual variability and a general decline in frequency during the 1930–2010 observational record. The distributions of monthly dust-event frequency and total dust flux are bimodal, with primary and secondary maxima in April and September, respectively. Dust reports are most common in the late afternoon and evening. An analysis of the 33 most recent (2001–10 WY) events at KSLC indicates that 11 were associated with airmass convection, 16 were associated with a cold front or baroclinic trough entering Utah from the west or northwest, 4 were associated with a stationary or slowly moving front or baroclinic trough west of Utah, and 2 were associated with other synoptic patterns. GOES imagery from these 33 events, as well as 61 additional events from the surrounding region, illustrates that emission sources are located primarily in low-elevation Late Pleistocene–Holocene alluvial environments in southern and western Utah and southern and western Nevada.
Variability of Blowing Dust Weather Frequency over Semi-Arid Areas of China (Baicheng, Jilin Province) and Relationships with Climatic Factors during 1951-2006
We analyzed the variability of blowing dust weather frequency (BDWF) and patterns in climatic factors over Baicheng for the period 1951 - 2006 in this study. The data showed that blowing dust over Baicheng occurs intensively during the spring and shows significant inter-decadal variability. One of the main findings is that the occurrence of blowing dust has significantly decreased after the mid-1980s. The mean wind speed (WS), diurnal temperature range (DTR), relative humidity (RH) and precipitation at Baicheng during the spring show decreasing trends. The decreasing trends of the mean WS and DTR are significant at 99% confidence levels according to the t-test; the dataset also indicated a sharp decrease in WS occurred after the mid-1980s. The mean surface air temperature (SAT) escalated in a fluctuating manner during 1951 - 2006. BDWF at Baicheng was significantly related to local WS, SAT and DTR during the spring [correlation coefficients (CCs) are 0.41, -0.47 and 0.36, respectively]. The correlation between BDWF at Baicheng and selected climatic factors over the sand-dust source regions and transmission paths were also calculated. We found that BDWF is well correlated to the mean WS and SAT during the spring, with CCs of 0.45 and -0.48, respectively. The most likely causes for the dramatic decrease observed in BDWF after the mid-1980s were related to the adjustment of large-scale circulation patterns in response to a decrease of meridional temperature differences, the weakening of steering westerlies and the strengthening of downward motions that has occurred at the middle latitudes of eastern Eurasia in recent decades.
When a Dust Storm Is Not a Dust Storm: Reliability of Dust Records From the Storm Events Database and Implications for Geohealth Applications
Windblown dust impacts human health, air quality, and climate. The National Weather Service Storm Events Database (SED) is a widely used dataset of significant or unusual weather, including dust storms (DS), and resulting deaths, injuries, and material losses in the USA. The SED is frequently used by medical, social, and atmospheric scientists. However, it is uncertain whether this dataset reliably represents spatial and temporal variations and trends of DS. Analyzing the SED from 2000 to 2020 identified 1,167 DS reports; removing reports of the same event from multiple locations left 647 DS in 21 USA states. The number of DS ranged from 12 in 2008 to 53 in 2018, with no strong interannual trends detected (R2 was 0.3). By examining the DS events reported in the SED based on meteorological observations including wind speed, visibility, and weather codes, we determined that the SED was not only missing many DS (visibility <1 km), but also included many blowing dust (BLDU) events. 49.9% of 491 reported DS events in SED had visibility >1 km and were incorrectly reported as DS. Underrepresentation of DS and inclusion of BLDU may be partially due to the diverse sources contributing to the SED and a lack of verification of the reports and their consistency. Although the SED is an extremely useful and valuable database of impactful weather, including DS, the issues found in this study warrant caution in use of this dataset for many geohealth applications. Plain Language Summary Dust storm (DS) is a weather phenomenon that has a strong impact on the environment, air quality, and human health. In the USA one of the widely used databases of dust events is the Storm Data publication and associated Storm Events Database (SED). This database is widely used among scientists, yet its reliability remains in question. This project aimed to examine the reliability and usefulness of the SED as a source for fully documenting DS across the USA. While this SED provides information potentially useful for understanding the frequency, distribution, and importance of DS across the USA, our analysis of DS from 2000 to 2020 shows that it is lacking many DS events, and contains events that should not have been reported as DS. Although this is the only existing extreme weather database including DS available for the USA as a whole, the issues found in this study hinder its accuracy, and reliability. Key Points Storm Events Database, a widely used weather event database for many health effects studies, is lacking many dust storms (DS) events Although the Storm Database is representative and useful, it may not be comprehensive or complete and thus should be used carefully There is a need for a new database of dust events, that will include all levels of dust events (including blowing dust and DS)
Analysis and Research on the Differences in Observed Data of Sand–Dust Weather between China and Mongolia
The difference in meteorological factors (such as weather phenomena, wind speed, and visibility) of sand–dust weather between China and Mongolia from 2011 to 2021 was analyzed using meteorological observational data and international exchange of meteorological observation data. Additionally, consistency analysis was performed by integrating satellite retrieval products with meteorological observation data. The results showed that the average annual frequency of sand–dust weather in Mongolia was significantly higher than that in China. In China, the sand–dust weather was mainly characterized by floating dust or blowing dust, while in Mongolia, it was primarily characterized by blowing dust or a sand and dust storm. The average annual wind speed and visibility during sand–dust weather in Mongolia were relatively higher than those in China. Based on the dust grade standard of China, when the floating dust occurred in Mongolia, there were cases with wind speed > level 3 and visibility > 10 km; when the blowing dust or sand and dust storm occurred in Mongolia, there were cases with wind speed ≤ level 3 and visibility > 10 km. In China, the sand–dust weather mainly occurred in the spring, while the sand-dust weather occurred frequently throughout the year in Mongolia. The number of days with dust lasting for 2 days or more in Mongolia exceeded that of China, and Mongolia had a significant impact on the sand–dust weather in China. According to the ground observation data and satellite retrieve products during the dust events, all dust events that significantly affected China and Mongolia during the same period from 2021 to 2022 were classified into three categories; among them, the proportion of types of large-scale sand–dust weather phenomena observed by both satellite and ground observation stations was significantly higher (6 times). By integrating ground observation data and satellite retrieval products and following the dust grade standard of China, the consistent correction of sand–dust weather phenomena was carried out. This laid the foundation for the future development of international dust grade standards and provided technological support for improved dust forecasting services in the Asian region.