Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
927 result(s) for "CTC"
Sort by:
Circulating tumor cell clusters: What we know and what we expect (Review)
The major cause of cancer-associated mortality is tumor metastasis, a disease that is far from understood. Many studies have observed circulating tumor cells (CTCs) in patients' circulation systems, and a few latest investigations showed that CTC clusters have a potentially high capacity of metastasis. The capture and analysis of CTC clusters offer new insights into tumor metastasis and can facilitate the development of cancer treatments. We reviewed the research history of the CTC clusters, as well as the technologies used for detecting and isolating CTC clusters. In addition, we discuss the characteristics of CTC clusters and their roles in tumor dissemination. Clinical relevance of CTC clusters was also implicated in currently limited data. Moving forward, the next frontier in this field is to develop more efficient capture methods and decipher conundrums of characterization of CTC clusters. This will ultimately identify the clinical value of CTC clusters as a biomarker and therapeutic target.
Circulating tumor cells clusters and their role in Breast cancer metastasis; a review of literature
Breast cancer is a significant and deadly threat to women globally. Moreover, Breast cancer metastasis is a complicated process involving multiple biological stages, which is considered a substantial cause of death, where cancer cells spread from the original tumor to other organs in the body—representing the primary mortality factor. Circulating tumor cells (CTCs) are cancer cells detached from the primary or metastatic tumor and enter the bloodstream, allowing them to establish new metastatic sites. CTCs can travel alone or in groups called CTC clusters. Studies have shown that CTC clusters have more potential for metastasis and a poorer prognosis than individual CTCs in breast cancer patients. However, our understanding of CTC clusters' formation, structure, function, and detection is still limited. This review summarizes the current knowledge of CTC clusters' biological properties, isolation, and prognostic significance in breast cancer. It also highlights the challenges and future directions for research and clinical application of CTC clusters.
PMN-MDSCs Enhance CTC Metastatic Properties through Reciprocal Interactions via ROS/Notch/Nodal Signaling
Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients’ blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.
Clinical utility of circulating tumor cells: an update
The prognostic role of circulating tumor cells (CTCs) has been clearly demonstrated in many types of cancer. However, their roles in diagnostic and treatment strategies remain to be defined. In this review, we present an overview of the current clinical validity of CTCs in nonmetastatic and metastatic cancer, and the main studies or concepts investigating the clinical utility of CTCs. In particular, we focus on breast, lung, colorectal, and prostate cancer. Two major topics concerning the clinical utility of CTC are discussed: treatment based on CTC count or CTC variations, and treatment based on the molecular characteristics of CTCs. Although some of these studies are inconclusive, many are still ongoing, and their results could help to define the role of CTCs in the management of cancers. A summary of published or ongoing phase II‐III trials is also presented. This review article discusses the clinical utility of circulating tumor cells (CTCs) in various settings of screening and treatment of non‐metastatic and metastatic tumors. Two major aspects are considered, namely i) treatment based on CTC count or CTC variations, and ii) treatment based on the molecular characteristics of CTCs. A summary of published or ongoing phase II‐III trials with CTCs is also presented.
The Role of Circulating Tumor Cells as a Liquid Biopsy for Cancer: Advances, Biology, Technical Challenges, and Clinical Relevance
Cancer remains a leading cause of mortality worldwide, with metastasis significantly contributing to its lethality. The metastatic spread of tumor cells, primarily through the bloodstream, underscores the importance of circulating tumor cells (CTCs) in oncological research. As a critical component of liquid biopsies, CTCs offer a non-invasive and dynamic window into tumor biology, providing invaluable insights into cancer dissemination, disease progression, and response to treatment. This review article delves into the recent advancements in CTC research, highlighting their emerging role as a biomarker in various cancer types. We explore the latest technologies and methods for CTC isolation and detection, alongside novel approaches to characterizing their biology through genomics, transcriptomics, proteomics, and epigenetic profiling. Additionally, we examine the clinical implementation of these findings, assessing how CTCs are transforming the landscape of cancer diagnosis, prognosis, and management. By offering a comprehensive overview of current developments and potential future directions, this review underscores the significance of CTCs in enhancing our understanding of cancer and in shaping personalized therapeutic strategies, particularly for patients with metastatic disease.
Microenvironment crosstalk and immune evasion of circulating tumor cells: From mechanism to clinical significance
Circulating tumor cells (CTCs), shed from the primary malignancies, are regarded as the \"seeds\" of tumor metastasis. They employ sophisticated strategies to evade immune detection during blood circulation by engaging with various blood components, ultimately facilitating their colonization in distant organs. Elucidating the mechanisms underlying CTC immune evasion may unlock novel immunotherapeutic strategies to prevent tumor metastasis. Recent advancements in CTC isolation and single-cell sequencing have provided insights into their complex microenvironment and immune evasion mechanisms. Many strategies for targeting either CTCs or their associated blood cells have been explored. Here, we systematically delineated the interaction network between CTCs and the diverse blood cells. By elucidating the microenvironmental and biological characteristics of CTCs, we summarize several potential immune evasion mechanisms, including immune checkpoint modulation, CTC clustering, platelet interactions, etc. Additionally, we highlight recent advances in intervention strategies targeting CTCs and the clinical application of CTCs in cancer liquid biopsy.
Circulating tumor cell technologies
Circulating tumor cells, a component of the “liquid biopsy”, hold great potential to transform the current landscape of cancer therapy. A key challenge to unlocking the clinical utility of CTCs lies in the ability to detect and isolate these rare cells using methods amenable to downstream characterization and other applications. In this review, we will provide an overview of current technologies used to detect and capture CTCs with brief insights into the workings of individual technologies. We focus on the strategies employed by different platforms and discuss the advantages of each. As our understanding of CTC biology matures, CTC technologies will need to evolve, and we discuss some of the present challenges facing the field in light of recent data encompassing epithelial-to-mesenchymal transition, tumor-initiating cells, and CTC clusters. •We present a comprehensive overview of CTC detection and capture technologies.•We provide a conceptual description of strategies used in different technologies.•We highlight the key features of individual technologies.•We discuss CTC technology performance in the context of clinical studies.
The identification of a TNBC liver metastasis gene signature by sequential CTC‐xenograft modeling
Triple‐negative breast cancer (TNBC) liver metastasis is associated with poor prognosis and low patient survival. It occurs when tumor cells disseminate from primary tumors, circulate in blood/lymph [circulating tumor cells (CTCs)], and acquire distinct characteristics during disease progression toward the metastatic phenotype. The purpose of this study was to decipher the genomic/transcriptomic properties of TNBC liver metastasis and its recurrence for potential therapeutic targeting. We employed a negative depletion strategy to isolate and interrogate CTCs from the blood of patients with TNBC, and to establish sequential generations of CTC‐derived xenografts (CDXs) through injection of patient CTCs in immunodeficient mice. The isolation and validation of CDX‐derived cell populations [analyses of CTCs were paired with bone marrow‐resident cells (BMRTCs) and liver tissue cells obtained from the same animal] were performed by multiparametric flow cytometry, immune phenotyping, and genomic sequencing of putative CTCs. Comprehensive characterization of gene expression arrays from sequentially generated CDX‐derived cell populations, online gene expression arrays, and TCGA databases were employed to discover a CTC‐driven, liver metastasis‐associated TNBC signature. We discovered a distinct transcriptomic signature of TNBC patient‐isolated CTCs from primary TNBCs, which was consistent throughout sequential CDX modeling. We established a novel TNBC liver metastasis‐specific CDX model that selectively recapitulates CTC biology for four sequential generations of mice. The evaluation of online databases and CDX‐derived populations revealed 597 genes specific to the TNBC liver metastasis signatures. Further investigation of the TNBC liver metastasis signature predicted 16 hub genes, 6 biomarkers with clinically available drugs, and 22 survival genes. The sequential interrogation of CDX‐CTCs is an innovative liquid biopsy‐based approach for the discovery of organ metastasis‐specific signatures of CTCs. This represents the first step for mechanistic and analytical validation in their application as prognostic indicators and therapeutic targets. Targeting CTC drug candidate biomarkers along with combination therapy can improve the clinical outcome of TNBC patients in general and recurrence of liver metastasis in particular. This study provides the first evidence proving that sequential generation of circulating tumor cell xenografts (CDXs) and CTC interrogation in triple‐negative breast cancer (TNBC) patients can identify CTC signatures and biomarkers to predict TNBC liver metastasis. Extrapolation of CDX modeling to other cancer types and its mechanistic and analytical validation will have prognostic and therapeutic relevance for discovery of biomarkers to treat target organ‐specific metastasis.
CTC-Derived Models: A Window into the Seeding Capacity of Circulating Tumor Cells (CTCs)
Metastasis is the main cause of cancer-related death owing to the blood-borne dissemination of circulating tumor cells (CTCs) early in the process. A rare fraction of CTCs harboring a stem cell profile and tumor initiation capacities is thought to possess the clonogenic potential to seed new lesions. The highest plasticity has been generally attributed to CTCs with a partial epithelial-to-mesenchymal transition (EMT) phenotype, demonstrating a large heterogeneity among these cells. Therefore, detection and functional characterization of these subclones may offer insight into mechanisms underlying CTC tumorigenicity and inform on the complex biology behind metastatic spread. Although an in-depth mechanistic investigation is limited by the extremely low CTC count in circulation, significant progress has been made over the past few years to establish relevant systems from patient CTCs. CTC-derived xenograft (CDX) models and CTC-derived ex vivo cultures have emerged as tractable systems to explore tumor-initiating cells (TICs) and uncover new therapeutic targets. Here, we introduce basic knowledge of CTC biology, including CTC clusters and evidence for EMT/cancer stem cell (CSC) hybrid phenotypes. We report and evaluate the CTC-derived models generated to date in different types of cancer and shed a light on challenges and key findings associated with these novel assays.
Analysis of a Real-World Cohort of Metastatic Breast Cancer Patients Shows Circulating Tumor Cell Clusters (CTC-clusters) as Predictors of Patient Outcomes
Circulating tumor cell (CTC) enumeration has emerged as a powerful biomarker for the assessment of prognosis and the response to treatment in metastatic breast cancer (MBC). Moreover, clinical evidences show that CTC-cluster counts add prognostic information to CTC enumeration, however, their significance is not well understood, and more clinical evidences are needed. We aim to evaluate the prognostic value of longitudinally collected single CTCs and CTC-clusters in a heterogeneous real-world cohort of 54 MBC patients. Blood samples were longitudinally collected at baseline and follow up. CTC and CTC-cluster enumeration was performed using the CellSearch® system. Associations with progression-free survival (PFS) and overall survival (OS) were evaluated using Cox proportional hazards modelling. Elevated CTC counts and CTC-clusters at baseline were significantly associated with a shorter survival time. In joint analysis, patients with high CTC counts and CTC-cluster at baseline were at a higher risk of progression and death, and longitudinal analysis showed that patients with CTC-clusters had significantly shorter survival compared to patients without clusters. Moreover, patients with CTC-cluster of a larger size were at a higher risk of death. A longitudinal analysis of a real-world cohort of MBC patients indicates that CTC-clusters analysis provides additional prognostic value to single CTC enumeration, and that CTC-cluster size correlates with patient outcome.