Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,640
result(s) for
"Cell Communication - drug effects"
Sort by:
The dormant cancer cell life cycle
2020
The success of targeted therapies and immunotherapies has created optimism that cancers may be curable. However, not all patients respond, drug resistance is common and many patients relapse owing to dormant cancer cells. These rare and elusive cells can disseminate early and hide in specialized niches in distant organs before being reactivated to cause disease relapse after successful treatment of the primary tumour. Despite their importance, we are yet to leverage knowledge generated from experimental models and translate the potential of targeting dormant cancer cells to prevent disease relapse in the clinic. This is due, at least in part, to the lack of adherence to consensus definitions by researchers, limited models that faithfully recapitulate this stage of metastatic spread and an absence of interdisciplinary approaches. However, the application of new high-resolution, single-cell technologies is starting to revolutionize the field and transcend classical reductionist models of studying individual cell types or genes in isolation to provide a global view of the complex underlying cellular ecosystem and transcriptional landscape that controls dormancy. In this Perspective, we synthesize some of these recent advances to describe the hallmarks of cancer cell dormancy and how the dormant cancer cell life cycle offers opportunities to target not only the cancer but also its environment to achieve a durable cure for seemingly incurable cancers.This Perspective proposes operational definitions to define the hallmarks of cancer cell dormancy and, based on the latest evidence pertaining to the role of the microenvironment in regulating dormancy, presents key stages in the life cycle of a dormant cancer cell that could be targeted.
Journal Article
Human pluripotent stem cell-derived neural constructs for predicting neural toxicity
by
Hou, Zhonggang
,
Thomson, James A.
,
Engstrom, Collin J.
in
Artificial intelligence
,
Bioassays
,
Bioinformatics
2015
Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia. Replicate constructs were reproducible by RNA sequencing (RNA-Seq) and expressed neurogenesis, vasculature development, and microglia genes. Linear support vector machines were used to construct a predictive model from RNA-Seq data for 240 neural constructs treated with 34 toxic and 26 nontoxic chemicals. The predictive model was evaluated using two standard hold-out testing methods: a nearly unbiased leave-one-out cross-validation for the 60 training compounds and an unbiased blinded trial using a single hold-out set of 10 additional chemicals. The linear support vector produced an estimate for future data of 0.91 in the cross-validation experiment and correctly classified 9 of 10 chemicals in the blinded trial.
Journal Article
Extracellular vesicles: biology and emerging therapeutic opportunities
by
Breakefield, Xandra O.
,
Wood, Matthew J. A.
,
Mäger, Imre
in
Biomedicine
,
Biotechnology
,
Cancer Research
2013
Extracellular vesicles have emerged as important mediators of intercellular communication, and they are now implicated in numerous biological and pathological processes. Here, Wood and colleagues focus on the role of extracellular vesicles in diseases including cancer, HIV and neurodegenerative disorders, and consider how extracellular vesicles might be targeted or directly exploited for therapeutic intervention.
Within the past decade, extracellular vesicles have emerged as important mediators of intercellular communication, being involved in the transmission of biological signals between cells in both prokaryotes and higher eukaryotes to regulate a diverse range of biological processes. In addition, pathophysiological roles for extracellular vesicles are beginning to be recognized in diseases including cancer, infectious diseases and neurodegenerative disorders, highlighting potential novel targets for therapeutic intervention. Moreover, both unmodified and engineered extracellular vesicles are likely to have applications in macromolecular drug delivery. Here, we review recent progress in understanding extracellular vesicle biology and the role of extracellular vesicles in disease, discuss emerging therapeutic opportunities and consider the associated challenges.
Journal Article
Dictionary of immune responses to cytokines at single-cell resolution
2024
Cytokines mediate cell–cell communication in the immune system and represent important therapeutic targets
1
–
3
. A myriad of studies have highlighted their central role in immune function
4
–
13
, yet we lack a global view of the cellular responses of each immune cell type to each cytokine. To address this gap, we created the Immune Dictionary, a compendium of single-cell transcriptomic profiles of more than 17 immune cell types in response to each of 86 cytokines (>1,400 cytokine–cell type combinations) in mouse lymph nodes in vivo. A cytokine-centric view of the dictionary revealed that most cytokines induce highly cell-type-specific responses. For example, the inflammatory cytokine interleukin-1β induces distinct gene programmes in almost every cell type. A cell-type-centric view of the dictionary identified more than 66 cytokine-driven cellular polarization states across immune cell types, including previously uncharacterized states such as an interleukin-18-induced polyfunctional natural killer cell state. Based on this dictionary, we developed companion software, Immune Response Enrichment Analysis, for assessing cytokine activities and immune cell polarization from gene expression data, and applied it to reveal cytokine networks in tumours following immune checkpoint blockade therapy. Our dictionary generates new hypotheses for cytokine functions, illuminates pleiotropic effects of cytokines, expands our knowledge of activation states of each immune cell type, and provides a framework to deduce the roles of specific cytokines and cell–cell communication networks in any immune response.
An extensive global transcriptomics analysis of in vivo responses to 86 cytokines across more than 17 immune cell types reveals enormous complexity of cellular responses to cytokines, providing the basis of the Immune Dictionary and its companion software Immune Response Enrichment Analysis.
Journal Article
Compaction, Fusion, and Functional Activation of Three-Dimensional Human Mesenchymal Stem Cell Aggregate
2015
Human mesenchymal stem cells (hMSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, hMSCs have intriguing properties of
in vitro
self-assembly into three-dimensional (3D) aggregates that improve a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. While cell–cell contacts and cell–extracellular matrix interactions mediate 3D cell aggregation, the adaptive changes of hMSC cytoskeleton during self-assembly and associated metabolic reconfiguration may also influence aggregate properties and functional activation. In this study, we investigated the role of actin in regulating 3D hMSC aggregate compaction, fusion, spreading and functional activation. Individual hMSC aggregates with controlled initial cell number were formed by seeding a known number of hMSCs (500, 2000, and 5000 cells/well) in multi-well plates of an ultra-low adherent surface to form multicellular aggregates in individual wells. To assess the influence of actin-mediated contractility on hMSC aggregation and properties, actin modulators, including cytochalasin D (cytoD), nocodazole, lysophosphatidic acid (LPA), and Y-27632, were added at different stages of aggregation and their impacts on hMSC aggregate compaction and apoptosis were monitored. The results suggest that actin-mediated contractility influences hMSC aggregation, compaction, fusion, and spreading on adherent surface. Formation of multi-cellular aggregates significantly upregulated caspase 3/7 expression, expression of C-X-C chemokine receptor type 4 (CXCR-4), cell migration, secretion of prostaglandin E2 (PGE-2) and interleukin 6 (IL-6), and resistance to
in vitro
ischemic stress. The functional enhancement, however, is dependent on caspase activation, because treatment with Q-VD-OPh, a pan-caspase inhibitor, attenuated CXCR-4 and cytokine secretion. Importantly, comparable ATP/cell levels and significantly reduced mitochondrial membrane potential in aggregates of different sizes suggest that altered mitochondria bioenergetics on 3D aggregation is the primary inducer for apoptosis. Together, the results suggest multicellular aggregation as an effective and nongenetic strategy for hMSC functional activation.
Journal Article
Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication
2013
Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca²⁺ entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.
Journal Article
Bi-directional cell-pericellular matrix interactions direct stem cell fate
2018
Modifiable hydrogels have revealed tremendous insight into how physical characteristics of cells’ 3D environment drive stem cell lineage specification. However, in native tissues, cells do not passively receive signals from their niche. Instead they actively probe and modify their pericellular space to suit their needs, yet the dynamics of cells’ reciprocal interactions with their pericellular environment when encapsulated within hydrogels remains relatively unexplored. Here, we show that human bone marrow stromal cells (hMSC) encapsulated within hyaluronic acid-based hydrogels modify their surroundings by synthesizing, secreting and arranging proteins pericellularly or by degrading the hydrogel. hMSC’s interactions with this local environment have a role in regulating hMSC fate, with a secreted proteinaceous pericellular matrix associated with adipogenesis, and degradation with osteogenesis. Our observations suggest that hMSC participate in a bi-directional interplay between the properties of their 3D milieu and their own secreted pericellular matrix, and that this combination of interactions drives fate.
3D hydrogels have provided information on the physical requirements of stem cell fate, but the contribution of interactions with the pericellular environment are under-explored. Here the authors show that pericellular matrix secreted by human bone marrow stromal cells (hMSC) embedded in a HA-based hydrogel contribute to hMSC fate.
Journal Article
Measuring dynamic cell–material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels
by
Schultz, Kelly M.
,
Anseth, Kristi S.
,
Kyburz, Kyle A.
in
3-D graphics
,
Biocompatible Materials - pharmacology
,
Biological Sciences
2015
Biomaterials that mimic aspects of the extracellular matrix by presenting a 3D microenvironment that cells can locally degrade and remodel are finding increased applications as wound-healing matrices, tissue engineering scaffolds, and even substrates for stem cell expansion. In vivo, cells do not simply reside in a static microenvironment, but instead, they dynamically reengineer their surroundings. For example, cells secrete proteases that degrade extracellular components, attach to the matrix through adhesive sites, and can exert traction forces on the local matrix, causing its spatial reorganization. Although biomaterials scaffolds provide initially well-defined microenvironments for 3D culture of cells, less is known about the changes that occur over time, especially local matrix remodeling that can play an integral role in directing cell behavior. Here, we use microrheology as a quantitative tool to characterize dynamic cellular remodeling of peptide-functionalized poly(ethylene glycol) (PEG) hydrogels that degrade in response to cell-secreted matrix metalloproteinases (MMPs). This technique allows measurement of spatial changes in material properties during migration of encapsulated cells and has a sensitivity that identifies regions where cells simply adhere to the matrix, as well as the extent of local cell remodeling of the material through MMP-mediated degradation. Collectively, these microrheological measurements provide insight into microscopic, cellular manipulation of the pericellular region that gives rise to macroscopic tracks created in scaffolds by migrating cells. This quantitative and predictable information should benefit the design of improved biomaterial scaffolds for medically relevant applications.
Journal Article
Airway Progenitor Clone Formation Is Enhanced by Y-27632–Dependent Changes in the Transcriptome
2016
The application of conditional reprogramming culture (CRC) methods to nasal airway epithelial cells would allow more wide-spread incorporation of primary airway epithelial culture models into complex lung disease research. In this study, we adapted the CRC method to nasal airway epithelial cells, investigated the growth advantages afforded by this technique over standard culture methods, and determined the cellular and molecular basis of CRC cell culture effects. We found that the CRC method allowed the production of 7.1 × 10(10) cells after 4 passages, approximately 379 times more cells than were generated by the standard bronchial epithelial growth media (BEGM) method. These nasal airway epithelial cells expressed normal basal cell markers and could be induced to form a mucociliary epithelium. Progenitor cell frequency was significantly higher using the CRC method in comparison to the standard culture method, and progenitor cell maintenance was dependent on addition of the Rho-kinase inhibitor Y-27632. Whole-transcriptome sequencing analysis demonstrated widespread gene expression changes in Y-27632-treated basal cells. We found that Y-27632 treatment altered expression of genes fundamental to the formation of the basal cell cytoskeleton, cell-cell junctions, and cell-extracellular matrix (ECM) interactions. Importantly, we found that Y-27632 treatment up-regulated expression of unique basal cell intermediate filament and desmosomal genes. Conversely, Y-27632 down-regulated multiple families of protease/antiprotease genes involved in ECM remodeling. We conclude that Y-27632 fundamentally alters cell-cell and cell-ECM interactions, which preserves basal progenitor cells and allows greater cell amplification.
Journal Article
Cellular interactions within the immune microenvironment underpins resistance to cell cycle inhibition in breast cancers
2025
Immune evasion by cancer cells involves reshaping the tumor microenvironment (TME) via communication with non-malignant cells. However, resistance-promoting interactions during treatment remain lesser known. Here we examine the composition, communication, and phenotypes of tumor-associated cells in serial biopsies from stage II and III high-risk estrogen receptor positive (ER+ ) breast cancers of patients receiving endocrine therapy (letrozole) as single agent or in combination with ribociclib, a CDK4/6-targeting cell cycle inhibitor. Single-cell RNA sequencing analyses on longitudinally collected samples show that in tumors overcoming the growth suppressive effects of ribociclib, first cancer cells upregulate cytokines and growth factors that stimulate immune-suppressive myeloid differentiation, resulting in reduced myeloid cell- CD8 + T-cell crosstalk via IL-15/18 signaling. Subsequently, tumors growing during treatment show diminished T-cell activation and recruitment. In vitro, ribociclib does not only inhibit cancer cell growth but also T cell proliferation and activation upon co-culturing. Exogenous IL-15 improves CDK4/6 inhibitor efficacy by augmenting T-cell proliferation and cancer cell killing by T cells. In summary, response to ribociclib in stage II and III high-risk ER + breast cancer depends on the composition, activation phenotypes and communication network of immune cells.
The CDK4/6 inhibitor ribociclib holds promise in cancer therapy but how cell cycle inhibitory drugs affect the anti-tumor immune response remains a question. Here authors show that poor response of early-stage estrogen receptor positive breast cancers to ribociclib is caused by changes in the immune cell composition and cancer-cell-immune-cell communication in the tumors rather than intrinsic cancer cell resistance to cell cycle inhibition.
Journal Article