Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
692 result(s) for "Clonidine - pharmacology"
Sort by:
Conjugate vaccine produces long-lasting attenuation of fentanyl vs. food choice and blocks expression of opioid withdrawal-induced increases in fentanyl choice in rats
The current opioid crisis remains a significant public health issue and there is a critical need for biomedical research to develop effective and easily deployable candidate treatments. One emerging treatment strategy for opioid use disorder includes immunopharmacotherapies or opioid-targeted vaccines. The present study determined the effectiveness of a fentanyl-tetanus toxoid conjugate vaccine to alter fentanyl self-administration using a fentanyl-vs.-food choice procedure in male and female rats under three experimental conditions. For comparison, continuous 7-day naltrexone (0.01–0.1 mg/kg/h) and 7-day clonidine (3.2–10 μg/kg/h) treatment effects were also determined on fentanyl-vs.-food choice. Male and female rats responded for concurrently available 18% diluted Ensure® (liquid food) and fentanyl (0–10 μg/kg/infusion) infusions during daily sessions. Under baseline and saline treatment conditions, fentanyl maintained a dose-dependent increase in fentanyl-vs.-food choice. First, fentanyl vaccine administration significantly blunted fentanyl reinforcement and increased food reinforcement for 15 weeks in non-opioid dependent rats. Second, surmountability experiments by increasing the unit fentanyl dose available during the self-administration session 10-fold empirically determined that the fentanyl vaccine produced an approximate 22-fold potency shift in fentanyl-vs.-food choice that was as effective as the clinically approved treatment naltrexone. Clonidine treatment significantly increased fentanyl-vs.-food choice. Lastly, fentanyl vaccine administration prevented the expression of withdrawal-associated increases in fentanyl-vs.-food choice following introduction of extended 12 h fentanyl access sessions. Overall, these results support the potential and further consideration of immunopharmacotherapies as candidate treatments to address the current opioid crisis.
Effect of propranolol and clonidine after severe traumatic brain injury: a pilot randomized clinical trial
Objective To evaluate the safety, feasibility, and efficacy of combined adrenergic blockade with propranolol and clonidine in patients with severe traumatic brain injury (TBI). Background Administration of adrenergic blockade after severe TBI is common. To date, no prospective trial has rigorously evaluated this common therapy for benefit. Methods This phase II, single-center, double-blinded, pilot randomized placebo-controlled trial included patients aged 16–64 years with severe TBI (intracranial hemorrhage and Glasgow Coma Scale score ≤ 8) within 24 h of ICU admission. Patients received propranolol and clonidine or double placebo for 7 days. The primary outcome was ventilator-free days (VFDs) at 28 days. Secondary outcomes included catecholamine levels, hospital length of stay, mortality, and long-term functional status. A planned futility assessment was performed mid-study. Results Dose compliance was 99%, blinding was intact, and no open-label agents were used. No treatment patient experienced dysrhythmia, myocardial infarction, or cardiac arrest. The study was stopped for futility after enrolling 47 patients (26 placebo, 21 treatment), per a priori stopping rules. There was no significant difference in VFDs between treatment and control groups [0.3 days, 95% CI (− 5.4, 5.8), p  = 1.0]. Other than improvement of features related to sympathetic hyperactivity (mean difference in Clinical Features Scale (CFS) 1.7 points, CI (0.4, 2.9), p  = 0.012), there were no between-group differences in the secondary outcomes. Conclusion Despite the safety and feasibility of adrenergic blockade with propranolol and clonidine after severe TBI, the intervention did not alter the VFD outcome. Given the widespread use of these agents in TBI care, a multi-center investigation is warranted to determine whether adrenergic blockade is of therapeutic benefit in patients with severe TBI. Trial Registration Number NCT01322048.
Unmasking the tonic-aversive state in neuropathic pain
Tonic pain, a chief clinical problem, is difficult to study in rodent models that measure threshold changes of evoked reactions to acutely applied stimuli. These authors used conditioned place preference to assess tonic pain in rats and measure the efficacy of agents that relieve it. Tonic pain has been difficult to demonstrate in animals. Because relief of pain is rewarding, analgesic agents that are not rewarding in the absence of pain should become rewarding only when there is ongoing pain. We used conditioned place preference to concomitantly determine the presence of tonic pain in rats and the efficacy of agents that relieve it. This provides a new approach for investigating tonic pain in animals and for evaluating the analgesic effects of drugs.
Pharmacological evidence for the implication of noradrenaline in effort
The trade-off between effort and reward is one of the main determinants of behavior, and its alteration is at the heart of major disorders such as depression or Parkinson's disease. Monoaminergic neuromodulators are thought to play a key role in this trade-off, but their relative contribution remains unclear. Rhesus monkeys (Macaca mulatta) performed a choice task requiring a trade-off between the volume of fluid reward and the amount of force to be exerted on a grip. In line with a causal role of noradrenaline in effort, decreasing noradrenaline levels with systemic clonidine injections (0.01 mg/kg) decreased exerted force and enhanced the weight of upcoming force on choices, without any effect on reward sensitivity. Using computational modeling, we showed that a single variable (\"effort\") could capture the amount of resources necessary for action and control both choices (as a variable for decision) and force production (as a driving force). Critically, the multiple effects of noradrenaline manipulation on behavior could be captured by a specific modulation of this single variable. Thus, our data strongly support noradrenaline's implication in effort processing.
Clonidine for sedation in the critically ill: a systematic review and meta-analysis
Background This systematic review and meta-analysis investigates the efficacy and safety of clonidine as a sedative in critically ill patients requiring invasive mechanical ventilation. Methods We performed a comprehensive search of MEDLINE, EMBASE, CINAHL and the Cochrane trial registry. We identified RCTs that compared clonidine to any non-clonidine regimen in critically ill patients, excluding neonates, requiring mechanical ventilation. The GRADE method was used to assess certainty of evidence. Results We included eight RCTs ( n  = 642 patients). In seven of the trials clonidine was used for adjunctive rather than stand-alone sedation. There was no difference in the duration of mechanical ventilation (mean difference (MD) 0.05 days, 95% confidence interval (CI) = -0.65 to 0.75, I 2  = 86%, moderate certainty), ICU mortality (relative risk (RR) 0.98, 95% CI = 0.51 to 1.90, I 2  = 0%, low certainty), or ICU length of stay (MD 0.04 days, 95% CI = -0.46 to 0.53, I 2  = 16%, moderate certainty), with clonidine. There was a significant reduction in the total dose of narcotics (standard mean difference (SMD) -0.26, 95% CI = -0.50 to -0.02, I 2  = 0%, moderate certainty) with clonidine use. Clonidine was associated with increased incidence of clinically significant hypotension (RR 3.11, 95% CI = 1.64 to 5.87, I 2  = 0%, moderate certainty). Conclusions Until further RCTs are performed, data remains insufficient to support the routine use of clonidine as a sedative in the mechanically ventilated population. Clonidine may act as a narcotic-sparing agent, albeit with an increased risk of clinically significant hypotension.
Dual contributions of noradrenaline to behavioural flexibility and motivation
Introduction While several theories have highlighted the importance of the noradrenergic system for behavioral flexibility, a number of recent studies have also shown a role for noradrenaline in motivation, particularly in effort processing. Here, we designed a novel sequential cost/benefit decision task to test the causal influence of noradrenaline on these two functions in rhesus monkeys. Methods We manipulated noradrenaline using clonidine, an alpha-2 noradrenergic receptor agonist, which reduces central noradrenaline levels and examined how this manipulation influenced performance on the task. Results Clonidine had two specific and distinct effects: first, it decreased choice variability, without affecting the cost/benefit trade-off; and second, it reduced force production, without modulating the willingness to work. Conclusions Together, these results support an overarching role for noradrenaline in facing challenging situations in two complementary ways: by modulating behavioral volatility, which would facilitate adaptation depending on the lability of the environment, and by modulating the mobilization of resources to face immediate challenges.
A Practical, Evidence-informed Approach to Managing Stimulant-Refractory Attention Deficit Hyperactivity Disorder (ADHD)
Stimulants (methylphenidate or amphetamines) are the recommended first-line option for the pharmacological treatment of individuals with attention deficit hyperactivity disorder (ADHD). However, some patients with ADHD will not respond optimally to stimulants. Here, we discuss strategies to manage stimulant-refractory ADHD, based on the recommendations advanced in clinical guidelines, knowledge of expert practice in the field, and our own clinical recommendations, informed by a comprehensive literature search in PubMed, PsycInfo, EMBASE + EMBASE classic, OVID Medline, and Web of Science (up to 30 March 2021). We first highlight the importance of stimulant optimization as an effective strategy to increase response. We then discuss a series of factors that should be considered before using alternative pharmacological strategies for ADHD, including poor adherence, time action properties of stimulants (and wearing-off of effects), poor tolerability (that prevents the use of higher, more effective doses), excessive focus on or confounding from presence of comorbid non-ADHD symptoms, and tolerance. Finally, we consider the role of non-stimulants and combined pharmacological approaches. While the choice of medication for ADHD is still to a large extent based on a trial-and-error process, there are reasonably accepted data and guidelines to aid in clinical decision-making. It is hoped that advances in precision psychiatry in the years ahead will further guide prescribers to tailor medication choice to the specific characteristics of the patient.
Selective Inhibition of a Regulatory Subunit of Protein Phosphatase 1 Restores Proteostasis
Many biological processes are regulated through the selective dephosphorylation of proteins. Protein serine-threonine phosphatases are assembled from catalytic subunits bound to diverse regulatory subunits that provide substrate specificity and subcellular localization. We describe a small molecule, guanabenz, that bound to a regulatory subunit of protein phosphatase 1, PPP1R15A/GADD34, selectively disrupting the stress-induced dephosphorylation of the α subunit of translation initiation factor 2 (eIF2α). Without affecting the related PPP1R15B-phosphatase complex and constitutive protein synthesis, guanabenz prolonged eIF2α phosphorylation in human stressed cells, adjusting the protein production rates to levels manageable by available chaperones. This favored protein folding and thereby rescued cells from protein misfolding stress. Thus, regulatory subunits of phosphatases are drug targets, a property used here to restore proteostasis in stressed cells.
Development of Tizanidine HCl-Meloxicam loaded mucoadhesive buccal films: In-vitro and in-vivo evaluation
The purpose of the study was to develop Tizanidine HCl (TZN) and Meloxicam (MLX) loaded bilayer mucoadhesive films intended for buccal administration, aiming to enhance the bioavailability. Bilayer films were prepared by solvent evaporation technique selecting arabinoxylan (ARX) as a sustained release (SR) layer forming polymer and hydroxypropyl methylcellulose (HPMC) E-15 as an immediate release (IR) layer-forming polymer. Prepared films were subjected to in-vitro drug release, surface morphology, mechanical strength, compatibility of the ingredients, drug contents, ex-vivo mucoadhesion strength and drug permeation. Crossover study design was applied to study the in-vivo pharmacokinetics by using albino rabbits. Various pharmacokinetic parameters including AUC, Cmax, tmax and t1/2 of both drugs loaded in films were compared with standard solution/dispersion administered to the rabbits at the dose of 1mg/kg. The results unveiled instant release and permeation of MLX from IR layer, while good controlled release and permeation characteristics of TZN from SR films over 8 h. films were of uniform thickness with smooth surface and satisfactory mechanical strength. Mucoadhesion strength was sufficient to provide suitable contact time with mucosal membrane. The pharmacokinetic study exhibited prompt absorption of MLX with better AUC 0-t (6655.64 ng/ml*h vs 6538.99 ng/ml*h) and Cmax (436.98 ng/ml vs 411.33 ng/ml) from oral dispersion. Similarly buccal films has shown enhanced half-life (9.91hr vs 2.51 hr), AUC 0-t (1043.4 ng/ml*h vs 149.1 ng/ml*h) and Cmax (91.92 ng/ml vs 42.29 ng/ml) from oral solution. A statistical investigation disclosed a significantly improved pharmacokinetics of TZN and MLX after their absorption across buccal route following administration of buccal film (p<0.05). ARX proved expedient and bilayer buccal films as a drug delivery system ascertained the dual effect of providing instant release of one active agent and persistent release of another one with improved pharmacokinetics.
Altered norepinephrine transmission after spatial learning impairs sleep-mediated memory consolidation in rats
The therapeutic use of noradrenergic drugs makes the evaluation of their effects on cognition of high priority. Norepinephrine (NE) is an important neuromodulator for a variety of cognitive processes and may importantly contribute to sleep-mediated memory consolidation. The NE transmission fluctuates with the behavioral and/or brain state and influences associated neural activity. Here, we assessed the effects of altered NE transmission after learning of a hippocampal-dependent task on neural activity and spatial memory in adult male rats. We administered clonidine (0.05 mg/kg, i.p.; n = 12 rats) or propranolol (10 mg/kg, i.p.; n = 11) after each of seven daily learning sessions on an 8-arm radial maze. Compared to the saline group (n = 9), the drug-treated rats showed lower learning rates. To assess the effects of drugs on cortical and hippocampal activity, we recorded prefrontal EEG and local field potentials from the CA1 subfield of the dorsal hippocampus for 2 h after each learning session or drug administration. Both drugs significantly reduced the number of hippocampal ripples for at least 2 h. An EEG-based sleep scoring revealed that clonidine made the sleep onset faster while prolonging quiet wakefulness. Propranolol increased active wakefulness at the expense of non-rapid eye movement (NREM) sleep. Clonidine reduced the occurrence of slow oscillations (SO) and sleep spindles during NREM sleep and altered the temporal coupling between SO and sleep spindles. Thus, pharmacological alteration of NE transmission produced a suboptimal brain state for memory consolidation. Our results suggest that the post-learning NE contributes to the efficiency of hippocampal-cortical communication underlying memory consolidation.