Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
76,164 result(s) for "Collisions"
Sort by:
Incoming asteroid! : what could we do about it?
\"Lately there have been more and more news stories on objects from space such as asteroids, comets, and meteors whizzing past Earth. One even exploded in the atmosphere over a Russian city in 2012, causing real damage and injuries. Impacts are not uncommon in our Solar System, even on Earth, and people are beginning to realize that we must prepare for such an event here on Earth. What if we knew there was going to be an impact in 10 years time? What could we do? Its not so far in the future that we can ignore the threat, and not so soon that nothing could be done. The author and his colleagues set out to explore how they could turn aside a rock asteroid, one kilometer in diameter, within this 10-year timescale. Having set themselves this challenge, they identified the steps that might be taken, using technologies that are currently under development or proposed. They considered an unmanned mission, a follow-up manned mission, and a range of final options, along with ways to reduce the worst consequences for humanity if the impact cannot be prevented. With more warning, the techniques described could be adapted to deal with more severe threats. If successful, they can generate the capability for a much expanded human presence in space thereafter. With the dangers now beginning to be recognized internationally and with major new programs already in motion, the prospects for civilization and humanity, in relation to the danger of impacts, look much more hopeful than they did only a decade ago.\"--Page 4 of cover.
Charmonium production measurements in small systems at LHCb
Charmonium production in hadronic collisions provides crucial insights into heavy quark interactions with nuclear media. In this work, we present comprehensive LHCb measurements of multiple quarkonium states in small collision systems. Our results disentangle initial-state effects (such as shadowing) from final-state effects (like comover breakup), establishing constraints on the maximum local temperature reached in p Pb collisions through the pattern of quarkonium survival based on binding energy.
Analysis of statistical data on drop collisions in an aerosol flow during experiments
The study presents a software code developed by using Mathematica. This code allows the automatic analysis of breakup consequences of heterogeneous drops. Moreover, we show how statistical data on drop collisions in a sprayed aerosol flow can be collected using this code. For this purpose, we have compared results of manual handling of video with automatic one.
Fire in the sky : cosmic collisions, killer astroids, and the race to defend Earth
A \"historical survey about asteroid hits sustained by Earth and the defenses being prepared against future asteroid-caused catastrophe\"-- Provided by publisher.
Performance of electron and photon triggers in ATLAS during LHC Run 2
Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for the ATLAS experiment to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena in both proton–proton and heavy-ion collisions. To cope with a fourfold increase of peak LHC luminosity from 2015 to 2018 (Run 2), to 2.1×1034cm-2s-1, and a similar increase in the number of interactions per beam-crossing to about 60, trigger algorithms and selections were optimised to control the rates while retaining a high efficiency for physics analyses. For proton–proton collisions, the single-electron trigger efficiency relative to a single-electron offline selection is at least 75% for an offline electron of 31 GeV, and rises to 96% at 60 GeV; the trigger efficiency of a 25 GeV leg of the primary diphoton trigger relative to a tight offline photon selection is more than 96% for an offline photon of 30 GeV. For heavy-ion collisions, the primary electron and photon trigger efficiencies relative to the corresponding standard offline selections are at least 84% and 95%, respectively, at 5 GeV above the corresponding trigger threshold.
Performance of the ATLAS Trigger System in 2010
Proton–proton collisions at  TeV and heavy ion collisions at  TeV were produced by the LHC and recorded using the ATLAS experiment’s trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented.
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B -factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau–Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include h c (1 P ), χ c 2 (2 P ), , and  η b (1 S ). In addition, the unexpected and still-fascinating X (3872) has been joined by more than a dozen other charmonium- and bottomonium-like “ XYZ ” states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark–gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of , , and bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an industrial-strength effort now dependent more on insight and innovation than pure computational power. New effective field theories for the description of quarkonium in different regimes have been developed and brought to a high degree of sophistication, thus enabling precise and solid theoretical predictions. Many expected decays and transitions have either been measured with precision or for the first time, but the confusing patterns of decays, both above and below open-flavor thresholds, endure and have deepened. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark–gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.