Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,563
result(s) for
"Critical Illness - epidemiology"
Sort by:
Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine
by
Elke, Gunnar
,
Schäper, Jörn
,
Preiser, Jean-Charles
in
Abdomen
,
Anesthesia & intensive care
,
Anesthésie & soins intensifs
2020
Background
Gastrointestinal (GI) dysfunction is frequent in the critically ill but can be overlooked as a result of the lack of standardization of the diagnostic and therapeutic approaches. We aimed to develop a research agenda for GI dysfunction for future research. We systematically reviewed the current knowledge on a broad range of subtopics from a specific viewpoint of GI dysfunction, highlighting the remaining areas of uncertainty and suggesting future studies.
Methods
This systematic scoping review and research agenda was conducted following successive steps: (1) identify clinically important subtopics within the field of GI function which warrant further research; (2) systematically review the literature for each subtopic using PubMed, CENTRAL and Cochrane Database of Systematic Reviews; (3) summarize evidence for each subtopic; (4) identify areas of uncertainty; (5) formulate and refine study proposals that address these subtopics; and (6) prioritize study proposals via sequential voting rounds.
Results
Five major themes were identified: (1) monitoring, (2) associations between GI function and outcome, (3) GI function and nutrition, (4) management of GI dysfunction and (5) pathophysiological mechanisms. Searches on 17 subtopics were performed and evidence summarized. Several areas of uncertainty were identified, six of them needing consensus process. Study proposals ranked among the first ten included: prevention and management of diarrhoea; management of upper and lower feeding intolerance, including indications for post-pyloric feeding and opioid antagonists; acute gastrointestinal injury grading as a bedside tool; the role of intra-abdominal hypertension in the development and monitoring of GI dysfunction and in the development of non-occlusive mesenteric ischaemia; and the effect of proton pump inhibitors on the microbiome in critical illness.
Conclusions
Current evidence on GI dysfunction is scarce, partially due to the lack of precise definitions. The use of core sets of monitoring and outcomes are required to improve the consistency of future studies. We propose several areas for consensus process and outline future study projects.
Journal Article
Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study
2020
AbstractObjectiveTo describe outcomes of people admitted to hospital with coronavirus disease 2019 (covid-19) in the United States, and the clinical and laboratory characteristics associated with severity of illness.DesignProspective cohort study.SettingSingle academic medical center in New York City and Long Island.Participants5279 patients with laboratory confirmed severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infection between 1 March 2020 and 8 April 2020. The final date of follow up was 5 May 2020.Main outcome measuresOutcomes were admission to hospital, critical illness (intensive care, mechanical ventilation, discharge to hospice care, or death), and discharge to hospice care or death. Predictors included patient characteristics, medical history, vital signs, and laboratory results. Multivariable logistic regression was conducted to identify risk factors for adverse outcomes, and competing risk survival analysis for mortality.ResultsOf 11 544 people tested for SARS-Cov-2, 5566 (48.2%) were positive. After exclusions, 5279 were included. 2741 of these 5279 (51.9%) were admitted to hospital, of whom 1904 (69.5%) were discharged alive without hospice care and 665 (24.3%) were discharged to hospice care or died. Of 647 (23.6%) patients requiring mechanical ventilation, 391 (60.4%) died and 170 (26.2%) were extubated or discharged. The strongest risk for hospital admission was associated with age, with an odds ratio of >2 for all age groups older than 44 years and 37.9 (95% confidence interval 26.1 to 56.0) for ages 75 years and older. Other risks were heart failure (4.4, 2.6 to 8.0), male sex (2.8, 2.4 to 3.2), chronic kidney disease (2.6, 1.9 to 3.6), and any increase in body mass index (BMI) (eg, for BMI >40: 2.5, 1.8 to 3.4). The strongest risks for critical illness besides age were associated with heart failure (1.9, 1.4 to 2.5), BMI >40 (1.5, 1.0 to 2.2), and male sex (1.5, 1.3 to 1.8). Admission oxygen saturation of <88% (3.7, 2.8 to 4.8), troponin level >1 (4.8, 2.1 to 10.9), C reactive protein level >200 (5.1, 2.8 to 9.2), and D-dimer level >2500 (3.9, 2.6 to 6.0) were, however, more strongly associated with critical illness than age or comorbidities. Risk of critical illness decreased significantly over the study period. Similar associations were found for mortality alone.ConclusionsAge and comorbidities were found to be strong predictors of hospital admission and to a lesser extent of critical illness and mortality in people with covid-19; however, impairment of oxygen on admission and markers of inflammation were most strongly associated with critical illness and mortality. Outcomes seem to be improving over time, potentially suggesting improvements in care.
Journal Article
Covid-19 in Critically Ill Patients in the Seattle Region — Case Series
2020
Community transmission of coronavirus 2019 (Covid-19) was detected in the state of Washington in February 2020.
We identified patients from nine Seattle-area hospitals who were admitted to the intensive care unit (ICU) with confirmed infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Clinical data were obtained through review of medical records. The data reported here are those available through March 23, 2020. Each patient had at least 14 days of follow-up.
We identified 24 patients with confirmed Covid-19. The mean (±SD) age of the patients was 64±18 years, 63% were men, and symptoms began 7±4 days before admission. The most common symptoms were cough and shortness of breath; 50% of patients had fever on admission, and 58% had diabetes mellitus. All the patients were admitted for hypoxemic respiratory failure; 75% (18 patients) needed mechanical ventilation. Most of the patients (17) also had hypotension and needed vasopressors. No patient tested positive for influenza A, influenza B, or other respiratory viruses. Half the patients (12) died between ICU day 1 and day 18, including 4 patients who had a do-not-resuscitate order on admission. Of the 12 surviving patients, 5 were discharged home, 4 were discharged from the ICU but remained in the hospital, and 3 continued to receive mechanical ventilation in the ICU.
During the first 3 weeks of the Covid-19 outbreak in the Seattle area, the most common reasons for admission to the ICU were hypoxemic respiratory failure leading to mechanical ventilation, hypotension requiring vasopressor treatment, or both. Mortality among these critically ill patients was high. (Funded by the National Institutes of Health.).
Journal Article
The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis
by
Prowle, John
,
Puthucheary, Zudin
,
Märkl, Tobias
in
Adult
,
Atrophy, Muscular
,
Care and treatment
2023
Background
Patients with critical illness can lose more than 15% of muscle mass in one week, and this can have long-term detrimental effects. However, there is currently no synthesis of the data of intensive care unit (ICU) muscle wasting studies, so the true mean rate of muscle loss across all studies is unknown. The aim of this project was therefore to systematically synthetise data on the rate of muscle loss and to identify the methods used to measure muscle size and to synthetise data on the prevalence of ICU-acquired weakness in critically ill patients.
Methods
We conducted a systematic literature search of MEDLINE, PubMed, AMED, BNI, CINAHL, and EMCARE until January 2022 (International Prospective Register of Systematic Reviews [PROSPERO] registration: CRD420222989540. We included studies with at least 20 adult critically ill patients where the investigators measured a muscle mass-related variable at two time points during the ICU stay. We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and assessed the study quality using the Newcastle–Ottawa Scale.
Results
Fifty-two studies that included 3251 patients fulfilled the selection criteria. These studies investigated the rate of muscle wasting in 1773 (55%) patients and assessed ICU-acquired muscle weakness in 1478 (45%) patients. The methods used to assess muscle mass were ultrasound in 85% (
n
= 28/33) of the studies and computed tomography in the rest 15% (
n
= 5/33). During the first week of critical illness, patients lost every day −1.75% (95% CI −2.05, −1.45) of their rectus femoris thickness or −2.10% (95% CI −3.17, −1.02) of rectus femoris cross-sectional area. The overall prevalence of ICU-acquired weakness was 48% (95% CI 39%, 56%).
Conclusion
On average, critically ill patients lose nearly 2% of skeletal muscle per day during the first week of ICU admission.
Journal Article
Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study
2020
Over 40 000 patients with COVID-19 have been hospitalised in New York City (NY, USA) as of April 28, 2020. Data on the epidemiology, clinical course, and outcomes of critically ill patients with COVID-19 in this setting are needed.
This prospective observational cohort study took place at two NewYork-Presbyterian hospitals affiliated with Columbia University Irving Medical Center in northern Manhattan. We prospectively identified adult patients (aged ≥18 years) admitted to both hospitals from March 2 to April 1, 2020, who were diagnosed with laboratory-confirmed COVID-19 and were critically ill with acute hypoxaemic respiratory failure, and collected clinical, biomarker, and treatment data. The primary outcome was the rate of in-hospital death. Secondary outcomes included frequency and duration of invasive mechanical ventilation, frequency of vasopressor use and renal replacement therapy, and time to in-hospital clinical deterioration following admission. The relation between clinical risk factors, biomarkers, and in-hospital mortality was modelled using Cox proportional hazards regression. Follow-up time was right-censored on April 28, 2020 so that each patient had at least 28 days of observation.
Between March 2 and April 1, 2020, 1150 adults were admitted to both hospitals with laboratory-confirmed COVID-19, of which 257 (22%) were critically ill. The median age of patients was 62 years (IQR 51–72), 171 (67%) were men. 212 (82%) patients had at least one chronic illness, the most common of which were hypertension (162 [63%]) and diabetes (92 [36%]). 119 (46%) patients had obesity. As of April 28, 2020, 101 (39%) patients had died and 94 (37%) remained hospitalised. 203 (79%) patients received invasive mechanical ventilation for a median of 18 days (IQR 9–28), 170 (66%) of 257 patients received vasopressors and 79 (31%) received renal replacement therapy. The median time to in-hospital deterioration was 3 days (IQR 1–6). In the multivariable Cox model, older age (adjusted hazard ratio [aHR] 1·31 [1·09–1·57] per 10-year increase), chronic cardiac disease (aHR 1·76 [1·08–2·86]), chronic pulmonary disease (aHR 2·94 [1·48–5·84]), higher concentrations of interleukin-6 (aHR 1·11 [95%CI 1·02–1·20] per decile increase), and higher concentrations of D-dimer (aHR 1·10 [1·01–1·19] per decile increase) were independently associated with in-hospital mortality.
Critical illness among patients hospitalised with COVID-19 in New York City is common and associated with a high frequency of invasive mechanical ventilation, extrapulmonary organ dysfunction, and substantial in-hospital mortality.
National Institute of Allergy and Infectious Diseases and the National Center for Advancing Translational Sciences, National Institutes of Health, and the Columbia University Irving Institute for Clinical and Translational Research.
Journal Article
Dysphagia in the intensive care unit: epidemiology, mechanisms, and clinical management
by
Zuercher, Patrick
,
Dziewas, Rainer
,
Schefold, Joerg C.
in
APACHE
,
Care and treatment
,
Critical care
2019
Dysphagia may present in all critically ill patients and large-scale clinical data show that e.g. post-extubation dysphagia (PED) is commonly observed in intensive care unit (ICU) patients. Recent data demonstrate that dysphagia is mostly persisting and that its presence is independently associated with adverse patient-centered clinical outcomes. Although several risk factors possibly contributing to dysphagia development were proposed, the underlying exact mechanisms in ICU patients remain incompletely understood and no current consensus exists on how to best approach ICU patients at risk.
From a clinical perspective, dysphagia is well-known to be associated with an increased risk of aspiration and aspiration-induced pneumonia, delayed resumption of oral intake/malnutrition, decreased quality of life, prolonged ICU and hospital length of stay, and increased morbidity and mortality. Moreover, the economic burden on public health care systems is high.
In light of high mortality rates associated with the presence of dysphagia and the observation that dysphagia is not systematically screened for on most ICUs, this review describes epidemiology, terminology, and potential mechanisms of dysphagia on the ICU. Furthermore, the impact of dysphagia on affected individuals, health care systems, and society is discussed in addition to current and future potential therapeutic approaches.
Journal Article
Influenza virus-related critical illness: pathophysiology and epidemiology
2019
Influenza virus affects the respiratory tract by direct viral infection or by damage from the immune system response. In humans, the respiratory epithelium is the only site where the hemagglutinin (HA) molecule is effectively cleaved, generating infectious virus particles. Virus transmission occurs through a susceptible individual’s contact with aerosols or respiratory fomites from an infected individual. The inability of the lung to perform its primary function of gas exchange can result from multiple mechanisms, including obstruction of the airways, loss of alveolar structure, loss of lung epithelial integrity from direct epithelial cell killing, and degradation of the critical extracellular matrix.
Approximately 30–40% of hospitalized patients with laboratory-confirmed influenza are diagnosed with acute pneumonia. These patients who develop pneumonia are more likely to be < 5 years old, > 65 years old, Caucasian, and nursing home residents; have chronic lung or heart disease and history of smoking, and are immunocompromised.
Influenza can primarily cause severe pneumonia, but it can also present in conjunction with or be followed by a secondary bacterial infection, most commonly by
Staphylococcus aureus
and
Streptococcus pneumoniae
. Influenza is associated with a high predisposition to bacterial sepsis and ARDS. Viral infections presenting concurrently with bacterial pneumonia are now known to occur with a frequency of 30–50% in both adult and pediatric populations. The H3N2 subtype has been associated with unprecedented high levels of intensive care unit (ICU) admission.
Influenza A is the predominant viral etiology of acute respiratory distress syndrome (ARDS) in adults. Risk factors independently associated with ARDS are age between 36 and 55 years old, pregnancy, and obesity, while protective factors are female sex, influenza vaccination, and infections with Influenza A (H3N2) or Influenza B viruses.
In the ICU, particularly during the winter season, influenza should be suspected not only in patients with typical symptoms and epidemiology, but also in patients with severe pneumonia, ARDS, sepsis with or without bacterial co-infection, as well as in patients with encephalitis, myocarditis, and rhabdomyolysis.
Journal Article
Obesity in the critically ill: a narrative review
2019
The World Health Organization defines overweight and obesity as the condition where excess or abnormal fat accumulation increases risks to health. The prevalence of obesity is increasing worldwide and is around 20% in ICU patients. Adipose tissue is highly metabolically active, and especially visceral adipose tissue has a deleterious adipocyte secretory profile resulting in insulin resistance and a chronic low-grade inflammatory and procoagulant state. Obesity is strongly linked with chronic diseases such as type 2 diabetes, hypertension, cardiovascular diseases, dyslipidemia, non-alcoholic fatty liver disease, chronic kidney disease, obstructive sleep apnea and hypoventilation syndrome, mood disorders and physical disabilities. In hospitalized and ICU patients and in patients with chronic illnesses, a J-shaped relationship between BMI and mortality has been demonstrated, with overweight and moderate obesity being protective compared with a normal BMI or more severe obesity (the still debated and incompletely understood “obesity paradox”). Despite this protective effect regarding mortality, in the setting of critical illness morbidity is adversely affected with increased risk of respiratory and cardiovascular complications, requiring adapted management. Obesity is associated with increased risk of AKI and infection, may require adapted drug dosing and nutrition and is associated with diagnostic and logistic challenges. In addition, negative attitudes toward obese patients (the social stigma of obesity) affect both health care workers and patients.
Journal Article
Ventilator-associated pneumonia in critically ill patients with COVID-19
2021
Background
Pandemic COVID-19 caused by the coronavirus SARS-CoV-2 has a high incidence of patients with severe acute respiratory syndrome (SARS). Many of these patients require admission to an intensive care unit (ICU) for invasive ventilation and are at significant risk of developing a secondary, ventilator-associated pneumonia (VAP).
Objectives
To study the incidence of VAP and bacterial lung microbiome composition of ventilated COVID-19 and non-COVID-19 patients.
Methods
In this retrospective observational study, we compared the incidence of VAP and secondary infections using a combination of microbial culture and a TaqMan multi-pathogen array. In addition, we determined the lung microbiome composition using 16S RNA analysis in a subset of samples. The study involved 81 COVID-19 and 144 non-COVID-19 patients receiving invasive ventilation in a single University teaching hospital between March 15th 2020 and August 30th 2020.
Results
COVID-19 patients were significantly more likely to develop VAP than patients without COVID (Cox proportional hazard ratio 2.01 95% CI 1.14–3.54,
p
= 0.0015) with an incidence density of 28/1000 ventilator days versus 13/1000 for patients without COVID (
p
= 0.009). Although the distribution of organisms causing VAP was similar between the two groups, and the pulmonary microbiome was similar, we identified 3 cases of invasive aspergillosis amongst the patients with COVID-19 but none in the non-COVID-19 cohort.
Herpesvirade
activation was also numerically more frequent amongst patients with COVID-19.
Conclusion
COVID-19 is associated with an increased risk of VAP, which is not fully explained by the prolonged duration of ventilation. The pulmonary dysbiosis caused by COVID-19, and the causative organisms of secondary pneumonia observed are similar to that seen in critically ill patients ventilated for other reasons.
Journal Article
Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment
by
Patterson, Thomas F.
,
Arendrup, Maiken Cavling
in
Animals
,
Antifungal Agents - pharmacology
,
Azoles - pharmacology
2017
Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence.
Journal Article