Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
7,560 result(s) for "Cross Infection - drug therapy"
Sort by:
Ecological effects of selective oral decontamination on multidrug-resistance bacteria acquired in the intensive care unit: a case–control study over 5 years
PurposeThis case–control study investigated the long-term evolution of multidrug-resistant bacteria (MDRB) over a 5-year period associated with the use of selective oropharyngeal decontamination (SOD) in the intensive care unit (ICU). In addition, effects on health care-associated infections and ICU mortality were analysed.MethodsWe investigated patients undergoing mechanical ventilation > 48 h in 11 adult ICUs located at 3 campuses of a university hospital. Administrative, clinical, and microbiological data which were routinely recorded electronically served as the basis. We analysed differences in the rates and incidence densities (ID, cases per 1000 patient-days) of MDRB associated with SOD use in all patients and stratified by patient origin (outpatient or inpatient). After propensity score matching, health-care infections and ICU mortality were compared.Results5034 patients were eligible for the study. 1694 patients were not given SOD. There were no differences in the incidence density of MDRB when SOD was used, except for more vancomycin-resistant Enterococcus faecium (0.72/1000 days vs. 0.31/1000 days, p < 0.01), and fewer ESBL-producing Klebsiella pneumoniae (0.22/1000 days vs. 0.56/1000 days, p < 0.01). After propensity score matching, SOD was associated with lower incidence rates of ventilator-associated pneumonia and death in the ICU but not with ICU-acquired bacteremia or urinary tract infection.ConclusionsComparisons of the ICU-acquired MDRB over a 5-year period revealed no differences in incidence density, except for lower rate of ESBL-producing Klebsiella pneumoniae and higher rate of vancomycin-resistant Enterococcus faecium with SOD. Incidence rates of ventilator-associated pneumonia and death in the ICU were lower in patients receiving SOD.
Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study
Purpose The recent increase in drug-resistant micro-organisms complicates the management of hospital-acquired bloodstream infections (HA-BSIs). We investigated the epidemiology of HA-BSI and evaluated the impact of drug resistance on outcomes of critically ill patients, controlling for patient characteristics and infection management. Methods A prospective, multicentre non-representative cohort study was conducted in 162 intensive care units (ICUs) in 24 countries. Results We included 1,156 patients [mean ± standard deviation (SD) age, 59.5 ± 17.7 years; 65 % males; mean ± SD Simplified Acute Physiology Score (SAPS) II score, 50 ± 17] with HA-BSIs, of which 76 % were ICU-acquired. Median time to diagnosis was 14 [interquartile range (IQR), 7–26] days after hospital admission. Polymicrobial infections accounted for 12 % of cases. Among monomicrobial infections, 58.3 % were gram-negative, 32.8 % gram-positive, 7.8 % fungal and 1.2 % due to strict anaerobes. Overall, 629 (47.8 %) isolates were multidrug-resistant (MDR), including 270 (20.5 %) extensively resistant (XDR), and 5 (0.4 %) pan-drug-resistant (PDR). Micro-organism distribution and MDR occurrence varied significantly ( p  < 0.001) by country. The 28-day all-cause fatality rate was 36 %. In the multivariable model including micro-organism, patient and centre variables, independent predictors of 28-day mortality included MDR isolate [odds ratio (OR), 1.49; 95 % confidence interval (95 %CI), 1.07–2.06], uncontrolled infection source (OR, 5.86; 95 %CI, 2.5–13.9) and timing to adequate treatment (before day 6 since blood culture collection versus never, OR, 0.38; 95 %CI, 0.23–0.63; since day 6 versus never, OR, 0.20; 95 %CI, 0.08–0.47). Conclusions MDR and XDR bacteria (especially gram-negative) are common in HA-BSIs in critically ill patients and are associated with increased 28-day mortality. Intensified efforts to prevent HA-BSIs and to optimize their management through adequate source control and antibiotic therapy are needed to improve outcomes.
Strategies to reduce curative antibiotic therapy in intensive care units (adult and paediatric)
Emerging resistance to antibiotics shows no signs of decline. At the same time, few new antibacterials are being discovered. There is a worldwide recognition regarding the danger of this situation. The urgency of the situation and the conviction that practices should change led the Société de Réanimation de Langue Française (SRLF) and the Société Française d’Anesthésie et de Réanimation (SFAR) to set up a panel of experts from various disciplines. These experts met for the first time at the end of 2012 and have since met regularly to issue the following 67 recommendations, according to the rigorous GRADE methodology. Five fields were explored: i) the link between the resistance of bacteria and the use of antibiotics in intensive care; ii) which microbiological data and how to use them to reduce antibiotic consumption; iii) how should antibiotic therapy be chosen to limit consumption of antibiotics; iv) how can antibiotic administration be optimized; v) review and duration of antibiotic treatments. In each institution, the appropriation of these recommendations should arouse multidisciplinary discussions resulting in better knowledge of local epidemiology, rate of antibiotic use, and finally protocols for improving the stewardship of antibiotics. These efforts should contribute to limit the emergence of resistant bacteria.
Weekly high-dose liposomal amphotericin B (L-AmB) in critically ill septic patients with multiple Candida colonization: The AmBiDex study
To demonstrate the feasibility and safety of weekly high-dose liposomal amphotericin B (L-AmB) (as a pre-emptive antifungal treatment) for 2 weeks in patients with septic shock and Candida colonization. Pilot, multicentre, open-label, prospective study conducted in seven French ICUs. Non-immunocompromised patients, receiving mechanical ventilation were eligible if they presented ICU-acquired severe sepsis requiring newly administered antibacterial agents and Candida colonization in at least two sites. Exclusion criteria included the need for antifungal therapy and creatinine > 220 μmol/L. All patients were to receive a high-dose L-AmB (10 mg/kg/week) for two weeks. A follow-up period of 21 days following the second administration of L-AmB was conducted. Treated patients were compared to 69 matched untreated controls admitted in the same ICUs before the study period. Twenty-one patients were included in the study, of which 20 received at least one infusion of high-dose L-AmB. A total of 24 adverse events were identified in 13(61%) patients. Fourteen adverse events were categorized as serious in 8(38%) patients. In four cases the adverse events were considered as potentially related to study drug administration and resulted in L-AmB discontinuation in one patient. Few patients experienced severe renal toxicity since no patient presented with severe hypokalemia. No patients required renal replacement therapy. Compared to matched controls, no significant increase in serum creatinine levels in patients receiving high-dose L-AmB was reported. Weekly administration of high-dose L-AmB has a manageable safety profile and is feasible in patients with ICU-acquired sepsis and multiple Candida colonization. Trials of L-AmB versus other antifungal agents used as pre-emptive antifungal therapy are warranted. ClinicalTrials.gov NCT00697944.
Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014
OBJECTIVE To describe antimicrobial resistance patterns for healthcare-associated infections (HAIs) that occurred in 2011-2014 and were reported to the Centers for Disease Control and Prevention's National Healthcare Safety Network. METHODS Data from central line-associated bloodstream infections, catheter-associated urinary tract infections, ventilator-associated pneumonias, and surgical site infections were analyzed. These HAIs were reported from acute care hospitals, long-term acute care hospitals, and inpatient rehabilitation facilities. Pooled mean proportions of pathogens that tested resistant (or nonsusceptible) to selected antimicrobials were calculated by year and HAI type. RESULTS Overall, 4,515 hospitals reported that at least 1 HAI occurred in 2011-2014. There were 408,151 pathogens from 365,490 HAIs reported to the National Healthcare Safety Network, most of which were reported from acute care hospitals with greater than 200 beds. Fifteen pathogen groups accounted for 87% of reported pathogens; the most common included Escherichia coli (15%), Staphylococcus aureus (12%), Klebsiella species (8%), and coagulase-negative staphylococci (8%). In general, the proportion of isolates with common resistance phenotypes was higher among device-associated HAIs compared with surgical site infections. Although the percent resistance for most phenotypes was similar to earlier reports, an increase in the magnitude of the resistance percentages among E. coli pathogens was noted, especially related to fluoroquinolone resistance. CONCLUSION This report represents a national summary of antimicrobial resistance among select HAIs and phenotypes. The distribution of frequent pathogens and some resistance patterns appear to have changed from 2009-2010, highlighting the need for continual, careful monitoring of these data across the spectrum of HAI types. Infect Control Hosp Epidemiol 2016;1-14.
The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update
Pseudomonas aeruginosa is a Gram-negative bacterial pathogen that is a common cause of nosocomial infections, particularly pneumonia, infection in immunocompromised hosts, and in those with structural lung disease such as cystic fibrosis. Epidemiological studies have identified increasing trends of antimicrobial resistance, including multi-drug resistant (MDR) isolates in recent years. P. aeruginosa has several virulence mechanisms that increase its ability to cause severe infections, such as secreted toxins, quorum sensing and biofilm formation. Management of P. aeruginosa infections focuses on prevention when possible, obtaining cultures, and prompt initiation of antimicrobial therapy, occasionally with combination therapy depending on the clinical scenario to ensure activity against P. aeruginosa . Newer anti-pseudomonal antibiotics are available and are increasingly being used in the management of MDR P. aeruginosa .
Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017
Describe common pathogens and antimicrobial resistance patterns for healthcare-associated infections (HAIs) that occurred during 2015-2017 and were reported to the Centers for Disease Control and Prevention's (CDC's) National Healthcare Safety Network (NHSN). Data from central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), ventilator-associated events (VAEs), and surgical site infections (SSIs) were reported from acute-care hospitals, long-term acute-care hospitals, and inpatient rehabilitation facilities. This analysis included device-associated HAIs reported from adult location types, and SSIs among patients ≥18 years old. Percentages of pathogens with nonsusceptibility (%NS) to selected antimicrobials were calculated for each HAI type, location type, surgical category, and surgical wound closure technique. Overall, 5,626 facilities performed adult HAI surveillance during this period, most of which were general acute-care hospitals with <200 beds. Escherichia coli (18%), Staphylococcus aureus (12%), and Klebsiella spp (9%) were the 3 most frequently reported pathogens. Pathogens varied by HAI and location type, with oncology units having a distinct pathogen distribution compared to other settings. The %NS for most pathogens was significantly higher among device-associated HAIs than SSIs. In addition, pathogens from long-term acute-care hospitals had a significantly higher %NS than those from general hospital wards. This report provides an updated national summary of pathogen distributions and antimicrobial resistance among select HAIs and pathogens, stratified by several factors. These data underscore the importance of tracking antimicrobial resistance, particularly in vulnerable populations such as long-term acute-care hospitals and intensive care units.
A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex
Klebsiella pneumoniae is a leading cause of antimicrobial-resistant (AMR) healthcare-associated infections, neonatal sepsis and community-acquired liver abscess, and is associated with chronic intestinal diseases. Its diversity and complex population structure pose challenges for analysis and interpretation of K. pneumoniae genome data. Here we introduce Kleborate, a tool for analysing genomes of K. pneumoniae and its associated species complex, which consolidates interrogation of key features of proven clinical importance. Kleborate provides a framework to support genomic surveillance and epidemiology in research, clinical and public health settings. To demonstrate its utility we apply Kleborate to analyse publicly available Klebsiella genomes, including clinical isolates from a pan-European study of carbapenemase-producing Klebsiella , highlighting global trends in AMR and virulence as examples of what could be achieved by applying this genomic framework within more systematic genomic surveillance efforts. We also demonstrate the application of Kleborate to detect and type K. pneumoniae from gut metagenomes. Klebsiella pneumoniae is a pathogen of increasing public health concern and antimicrobial resistance is becoming more prevalent. Here, the authors describe a K. pneumoniae genotyping tool, Kleborate, that can be used to identify lineages and detect antimicrobial resistance and virulence loci.
Bacterial Infections After Burn Injuries
Patients who are admitted to the hospital after sustaining a large burn injury are at high risk for developing hospital-associated infections. If patients survive the initial 72 hours after a burn injury, infections are the most common cause of death. Ventilator-associated pneumonia is the most important infection in this patient population. The risk of infections caused by multidrug-resistant bacterial pathogens increases with hospital length of stay in burn patients. In the first days of the postburn hospitalization, more susceptible, Gram-positive organisms predominate, whereas later more resistant Gram-negative organisms are found. These findings impact the choice of empiric antibiotics in critically ill burn patients. A proactive infection control approach is essential in burn units. Furthermore, a multidisciplinary approach to burn patients with a team that includes an infectious disease specialist and a pharmacist in addition to the burn surgeon is highly recommended.
Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment
Although disinfection is key to infection control, the colonization patterns and resistomes of hospital-environment microbes remain underexplored. We report the first extensive genomic characterization of microbiomes, pathogens and antibiotic resistance cassettes in a tertiary-care hospital, from repeated sampling (up to 1.5 years apart) of 179 sites associated with 45 beds. Deep shotgun metagenomics unveiled distinct ecological niches of microbes and antibiotic resistance genes characterized by biofilm-forming and human-microbiome-influenced environments with corresponding patterns of spatiotemporal divergence. Quasi-metagenomics with nanopore sequencing provided thousands of high-contiguity genomes, phage and plasmid sequences (>60% novel), enabling characterization of resistome and mobilome diversity and dynamic architectures in hospital environments. Phylogenetics identified multidrug-resistant strains as being widely distributed and stably colonizing across sites. Comparisons with clinical isolates indicated that such microbes can persist in hospitals for extended periods (>8 years), to opportunistically infect patients. These findings highlight the importance of characterizing antibiotic resistance reservoirs in hospitals and establish the feasibility of systematic surveys to target resources for preventing infections. Spatiotemporal characterization of microbial diversity and antibiotic resistance in a tertiary-care hospital reveals broad distribution and persistence of antibiotic-resistant organisms that could cause opportunistic infections in a healthcare setting.