Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
84 result(s) for "Cry1"
Sort by:
Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals
In mammals, the circadian clock consists of transcriptional and translational feedback loops through DNA cis -elements such as E-box and RRE. The E-box-mediated core feedback loop is interlocked with the RRE-mediated feedback loop, but biological significance of the RRE-mediated loop has been elusive. In this study, we established mutant cells and mice deficient for rhythmic transcription of Bmal1 gene by deleting its upstream RRE elements and hence disrupted the RRE-mediated feedback loop. We observed apparently normal circadian rhythms in the mutant cells and mice, but a combination of mathematical modeling and experiments revealed that the circadian period and amplitude of the mutants were more susceptible to disturbance of CRY1 protein rhythm. Our findings demonstrate that the RRE-mediated feedback regulation of Bmal1 underpins the E-box-mediated rhythm in cooperation with CRY1-dependent posttranslational regulation of BMAL1 protein, thereby conferring the perturbation-resistant oscillation and chronologically-organized output of the circadian clock. The mammalian circadian clock is composed of clock genes forming transcriptional feedback loops. Here, the authors identify a key role of the secondary feedback loop that is interlocked with the core loop to establish a perturbation-resilient clock system.
Transcriptome Analyses Reveal the Involvement of Both C and N Termini of Cryptochrome 1 in Its Regulation of Phytohormone-Responsive Gene Expression in Arabidopsis
Cryptochromes (CRY) are blue-light photoreceptors that mediate various light responses in plants and animals. It has long been demonstrated that Arabidopsis CRY (CRY1 and CRY2) C termini (CCT1 and CCT2) mediate light signaling through direct interaction with COP1. Most recently, CRY1 N terminus (CNT1) has been found to be involved in CRY1 signaling independent of CCT1, and implicated in the inhibition of gibberellin acids (GA)/brassinosteroids (BR)/auxin-responsive gene expression. Here, we performed RNA-Seq assay using transgenic plants expressing CCT1 fused to β-glucuronidase (GUS-CCT1, abbreviated as CCT1), which exhibit a constitutively photomorphogenic phenotype, and compared the results with those obtained previously from cry1cry2 mutant and the transgenic plants expressing CNT1 fused to nuclear localization signal sequence (NLS)-tagged YFP (CNT1-NLS-YFP, abbreviated as CNT1), which display enhanced responsiveness to blue light. We found that 2903 (67.85%) of the CRY-regulated genes are regulated by CCT1 and that 1095 of these CCT1-regulated genes are also regulated by CNT1. After annotating the gene functions, we found that CCT1 is involved in mediating CRY1 regulation of phytohormone-responsive genes, like CNT1, and that about half of the up-regulated genes by GA/BR/auxin are down-regulated by CCT1 and CNT1, consistent with the antagonistic role for CRY1 and these phytohormones in regulating hypocotyl elongation. Physiological studies showed that both CCT1 and CNT1 are likely involved in mediating CRY1 reduction of seedlings sensitivity to GA under blue light. Furthermore, protein expression studies demonstrate that the inhibition of GA promotion of HY5 degradation by CRY1 is likely mediated by CCT1, but not by CNT1. These results give genome-wide transcriptome information concerning the signaling mechanism of CRY1, unraveling possible involvement of its C and N termini in its regulation of response of GA and likely other phytohormones.
Signaling Mechanisms by Arabidopsis Cryptochromes
Cryptochromes (CRYs) are blue light photoreceptors that regulate growth, development, and metabolism in plants. In Arabidopsis thaliana (Arabidopsis), CRY1 and CRY2 possess partially redundant and overlapping functions. Upon exposure to blue light, the monomeric inactive CRYs undergo phosphorylation and oligomerization, which are crucial to CRY function. Both the N- and C-terminal domains of CRYs participate in light-induced interaction with multiple signaling proteins. These include the COP1/SPA E3 ubiquitin ligase, several transcription factors, hormone signaling intermediates and proteins involved in chromatin-remodeling and RNA N6 adenosine methylation. In this review, we discuss the mechanisms of Arabidopsis CRY signaling in photomorphogenesis and the recent breakthroughs in Arabidopsis CRY research.
Study on the Mechanisms of Ischemic Stroke Impacting Sleep Homeostasis and Circadian Rhythms in Rats
ABSTRACT Objective This study aimed to investigate the impact of ischemic stroke (IS) on sleep homeostasis and circadian rhythms in rats, as well as the underlying mechanisms. Methods The middle cerebral artery occlusion model was employed to induce IS in rats. Sixty young and sixty aged rats were randomly divided into six groups for experiments. Neurological function was assessed using the Garcia score, and infarct size was evaluated through 2,3,5‐triphenyltetrazolium chloride staining. Sleep–wake cycles were monitored by implanting electrodes into the neck muscles to record electroencephalograms and electromyograms. Parameters such as sleep latency, waking time, non‐rapid eye movement (NREM) sleeping, rapid eye movement sleeping, NREM delta power, and waking theta power were measured. Serum cortisol and melatonin levels were measured using enzyme‐linked immunosorbent assay. Gene and protein expression of circadian regulators period 1 (Per1) and cryptochrome 1 (Cry1) in the pineal gland were assessed using real‐time quantitative reverse transcription polymerase chain reaction and western blot. Results Compared to the sham groups, IS‐induced rats showed a decrease in Garcia scores and an increase in cerebral infarction area. Besides, relative to young rats, aged rats exhibited more severe cerebral infraction damage, lower melatonin levels, higher cortisol levels, disrupted sleep–wake cycles, and altered gene and protein expression levels of Per1 and Cry1 in the pineal gland. Conclusions IS can lead to neurological impairments and brain damage, with aged rats showing more severe effects. IS also disturbs melatonin and cortisol levels, affects sleep homeostasis, and results in disordered Per1 and Cry1 gene and protein expression levels. These findings underscore the role of circadian disruption and stress response in the pathology of IS, especially in aging populations. This research disclosed that ischemic stroke caused sensory motor deficits and different degrees of brain tissue damage in both young and aged rats, accompanied by disturbances in melatonin secretion, elevated cortisol levels, and disruptions in the sleep‐awakening cycle and the expression of circadian rhythm‐related genes Per1 and Cry1. In the future, further exploration of these issues and mechanisms will be conducted, thereby providing treatment ideas for related diseases.
Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells
The cell biology of circadian clocks is still in its infancy. Here, we describe an efficient strategy for generating knock-in reporter cell lines using CRISPR technology that is particularly useful for genes expressed transiently or at low levels, such as those coding for circadian clock proteins. We generated single and double knock-in cells with endogenously expressed PER2 and CRY1 fused to fluorescent proteins allowing us to simultaneously monitor the dynamics of CRY1 and PER2 proteins in live single cells. Both proteins are highly rhythmic in the nucleus of human cells with PER2 showing a much higher amplitude than CRY1. Surprisingly, CRY1 protein is nuclear at all circadian times indicating the absence of circadian gating of nuclear import. Furthermore, in the nucleus of individual cells CRY1 abundance rhythms are phase-delayed (~5 hours), and CRY1 levels are much higher (>5 times) compared to PER2 questioning the current model of the circadian oscillator. Live-cell recordings have been an important tool for studying circadian rhythms. Here the authors use CRISPR gene editing mediated knock-in to fluorescently tag Per2 and Cry1, and study cellular circadian dynamics of these two clock proteins.
Cryptochrome proteins regulate the circadian intracellular behavior and localization of PER2 in mouse suprachiasmatic nucleus neurons
The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN time-keeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism.
Expression of cell proliferation regulatory factors bricd5, tnfrsf21, cdk1 correlates with expression of clock gene cry1 in testes of Hu rams during puberty
BackgroundCryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers.Methods and resultsWe analyzed testicular tissues from Hu sheep aged 0–180 days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5′ flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90 days to 180 days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation.ConclusionsThere is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.
Period2 3′-UTR and microRNA-24 regulate circadian rhythms by repressing PERIOD2 protein accumulation
We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the Per2 3′-UTR region: Per2:: Luc, which retains the endogenous Per2 3′-UTR and Per2::LucSV, where the endogenous Per2 3′-UTR was replaced by an SV40 late poly(A) signal. To delineate the in vivo functions of Per2 3′-UTR, we analyzed circadian rhythms of Per2::LucSV mice. Interestingly, Per2::LucSV mice displayed more than threefold stronger amplitude in bioluminescence rhythms than Per2::Luc mice, and also exhibited lengthened free-running periods (∼24.0 h), greater phase delays following light pulse, and enhanced temperature compensation relative to Per2::Luc. Analysis of the Per2 3′-UTR sequence revealed that miR-24, and to a lesser degree miR-30, suppressed PER2 protein translation, and the reversal of this inhibition in Per2::LucSV augmented PER2::LUC protein level and oscillatory amplitude. Interestingly, Bmal1 mRNA and protein oscillatory amplitude as well as CRY1 protein oscillation were increased in Per2:: LucSV mice, suggesting rhythmic overexpression of PER2 enhances expression of Per2 and other core clock genes. Together, these studies provide important mechanistic insights into the regulatory roles of Per2 3′-UTR, miR-24, and PER2 in Per2 expression and core clock function.
Dietary palmitic acid to oleic acid ratio modulates energy metabolism and biological rhythms in young healthy Japanese males
The present study investigated the potential role of the composition of dietary fatty acids in the regulation of biological rhythms, such as the sleep architecture, core body temperature and leukocyte clock gene expression, in subjects fed meals rich in palmitic acid (PA) or oleic acid (OA). Eleven males participated in two sessions of indirect calorimetry in a whole-room metabolic chamber. In each session, subjects consumed three meals rich in PA (44·3 % of total fat as PA and 42·3 % as OA) or OA (11·7 % of total fat as PA and 59·3 % as OA) in the metabolic chamber. The ratio of PA to OA in plasma was significantly lower and fat oxidation was significantly higher during 24 h of indirect calorimetry in the session with meals rich in OA than in that with meals rich in PA. The duration of slow wave sleep (SWS) was shorter, the latency of SWS was longer and the nadir of core body temperature after bedtime was later in the session with meals rich in PA than in that with meals rich in OA. The peak in CRY1 gene expression was earlier and its amplitude was higher in the session with meals rich in PA than in that with meals rich in OA. In healthy young males, meals rich in PA decreased fat oxidation and disrupted biological rhythms, particularly the sleep architecture and core body temperature during sleep, more than meals rich in OA.
Detection of genetic markers in the zoometrical index of Indonesian local cattle with Bovine 50K SNP BeadChip
Zoometrical index can be used to evaluate the performance of cattle. The present study aimed to detect the genetic markers for zoometrical index of cattle. Forty-five heads of mixed-sex cattle consisting of Bali (16), Madura (16), and Peranakan Ongole / PO (13) were collected from the breeding station for the experimental animals in this study. A Bovine 50K SNP BeadChip was used to explore genetic mutation in the autosomal chromosomes. Nine parameters of zoometrical index were evaluated in the present study. A TASSEL 5.0 software was used to evaluate 24,347 SNP markers. Research showed that two SNP Markers of ARS-BFGL-NGS-115374 (SNP1) and Hapmap28985-BTA-73836 (SNP2) had a significant association with zoometrical index in pool animals based on the Manhattan plot. The SNP1 had a significant association with the area index. Subsequently, a SNP2 significantly correlated with body ratio and over-increase index parameters. In addition, SNP1 is not located in the gene region. Meanwhile, SNP2 is located at the intron 5 region of the Cryptochromes circadian regulator 1 ( CRY1 ) gene. However, this gene was polymorphic in Bos indicus cattle (Madura and PO). In conclusion, the CRY1 gene can improve the zoometrical index in Indonesian Bos indicus cattle (Madura and PO)