Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
57
result(s) for
"Diarrhea Viruses, Bovine Viral - drug effects"
Sort by:
Entry of bovine viral diarrhea virus into ovine cells occurs through clathrin-dependent endocytosis and low pH-dependent fusion
by
Behera, Sthita Pragnya
,
Nema, Ram Kumar
,
Rajukumar, Katherukamem
in
Acidification
,
Ammonium
,
ammonium chloride
2010
Although mechanisms of bovine viral diarrhea virus (BVDV) entry into bovine cells have been elucidated, little is known concerning pestivirus entry and receptor usage in ovine cells. In this study, we determined the entry mechanisms of BVDV-1 and BVDV-2 in sheep fetal thymus cells. Both BVDV-1 and BVDV-2 infections were inhibited completely by chlorpromazine, β-methyl cyclodextrin, sucrose, bafilomycin A1, chloroquine, and ammonium chloride. Simultaneous presence of reducing agent and low pH resulted in marked loss of BVDV infectivity. Moreover, BVDV was unable to fuse with ovine cell membrane by the presence of reducing agent or low pH alone, while combination of both led to fusion at low efficiency. Furthermore, sheep fetal thymus cells acutely infected with BVDV-1 or BVDV-2 were found protected from heterologous BVDV infection. Taken together, our results showed for the first time that entry of both BVDV-1 and BVDV-2 into ovine cells occurred through clathrin-dependent endocytosis, endosomal acidification, and low pH-dependent fusion following an activation step, besides suggesting the involvement of a common ovine cellular receptor during attachment and entry.
Journal Article
Limitations of bacterial culture, viral PCR, and tulathromycin susceptibility from upper respiratory tract samples in predicting clinical outcome of tulathromycin control or treatment of bovine respiratory disease in high-risk feeder heifers
by
Taube, Patrick C.
,
Pollreisz, John P.
,
Bechtol, David T.
in
Analysis
,
Animals
,
Anti-Bacterial Agents - pharmacology
2022
A cross-sectional prospective cohort study including 1026 heifers administered tulathromycin due to high risk of clinical signs of bovine respiratory disease (BRD), measured poor association between BRD clinical outcomes and results of bacterial culture and tulathromycin susceptibility from BRD isolates of deep nasopharyngeal swabs (DNS) and adequate association with viral polymerase chain reaction (PCR) results from nasal swabs. Isolation rates from DNS collected on day-0 and at 1
st
BRD-treatment respectively were:
Mannheimia haemolytica
(10.9% & 34.1%);
Pasteurella multocida
(10.4% & 7.4%);
Mycoplasma bovis
(1.0% & 36.6%); and
Histophilus somni
(0.7% & 6.3%). Prevalence of BRD viral nucleic acid on nasal swabs collected exclusively at 1
st
BRD-treatment were: bovine parainfluenza virus type-3 (bPIV-3) 34.1%; bovine viral diarrhea virus (BVDV) 26.3%; bovine herpes virus type-1 (BHV-1) 10.8%; and bovine respiratory syncytial virus (BRSV) 54.1%. Increased relative risk, at 95% confidence intervals, of 1
st
BRD-treatment failure was associated with positive viral PCR results: BVDV 1.39 (1.17–1.66), bPIV-3 1.26 (1.06–1.51), BHV-1 1.52 (1.25–1.83), and BRSV 1.35 (1.11–1.63) from nasal swabs collected at 1
st
BRD-treatment and culture of
M
.
haemolytica
1.23 (1.00–1.51) from DNS collected at day-0. However, in this population of high-risk feeder heifers, the predictive values of susceptible and resistant isolates had inadequate association with BRD clinical outcome. These results indicate, that using tulathromycin susceptibility testing of isolates of
M
.
haemolytica
or
P
.
multocida
from DNS collected on arrival or at 1
st
BRD-treatment to evaluate tulathromycin clinical efficacy, is unreliable.
Journal Article
Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus
by
Małaczewska, Joanna
,
Kaczorek-Łukowska, Edyta
,
Siwicki, Andrzej Krzysztof
in
Animals
,
Antimicrobial peptides
,
Antiviral
2019
Background
Bovine viral diarrhoea virus (BVDV), an enveloped, single-stranded, positive-sense RNA virus from the
Flaviviridae
family, is a globally distributed bovine pathogen. BVDV infection in cattle, despite having a wide range of clinical manifestations, is invariably responsible for significant economic losses. To counteract these losses, various schemes to control and eradicate BVDV have been implemented, although safe drugs effectively inhibiting the replication of the virus are still lacking. The purpose of this study was to characterize the antiviral effect of naturally occurring proteins and peptide, such as bovine lactoferrin, chicken egg lysozyme, and nisin from
Lactococcus lactis
, used both individually and in combination, against the cytopathic NADL strain of BVDV in vitro. After determining the cytotoxicity level of each protein or peptide to MDBK cells, its antiviral effects were evaluated using virucidal, cytopathic effect inhibition and viral yield reduction assays. In addition, the influence of the tested compounds on the intracellular viral RNA level was determined.
Results
The highest efficacy among the single treatments was achieved by bovine lactoferrin, which was effective both at the early stages of viral infection and during its entire course, although the effect weakened over time. Nisin and lysozyme were effective at later stages of infection, and the intensity of their effect did not diminish with time. Nisin+lactoferrin and lysozyme+lactoferrin combinations demonstrated stronger antiviral effects than did the single substances. The nisin+lactoferrin mixture present during the whole period of infection produced the strongest anti-BVDV effect in our entire research on both the extracellular viral titre (titre reduction up to 2.875 log ≈ 99.9%) and the intracellular viral RNA level (reduction up to 89%), and this effect intensified over the incubation time.
Conclusions
The tested substances could be applied in bovine viral diarrhoea prevention and therapy, especially when used in combination.
Journal Article
Cryptotanshinone Suppresses BVDV Propagation by Suppressing Cell Apoptosis and Restoring Hormone Secretion in Bovine Granulosa Cells
2025
Bovine viral diarrhea virus (BVDV) constitutes a significant pathogen adversely threatening reproductive performance in the cattle industry, primarily by inducing ovarian dysfunction characterized by aberrant hormone synthesis and impaired follicular development. Although several commercial vaccines are available, they are insufficient for prevention and control BVDV infection, underscoring the necessity for the development of novel therapeutic drugs. This study aimed to investigate the antiviral activity of cryptotanshinone (CRY) against BVDV infection and its protective effects on bovine ovarian granulosa cells (BOGCs). An in vitro infection model was established by exposing BOGCs to BVDV. The results demonstrated that CRY exhibits anti-BVDV activity and alleviates detrimental effects on BOGCs through multiple mechanisms. Comparative analysis revealed that therapeutic administration of CRY constitutes the most effective mode of intervention. Furthermore, CRY promotes the secretion of estradiol (E2) and progesterone (P4) in BOGCs, counteracting the BVDV-induced reduction in these hormones. Moreover, CRY shows protective activity by mitigating BVDV-induced apoptosis in BOGCs. In summary, this study is the first to elucidate the inhibitory effect of CRY on BVDV and its regulatory role in BOGCs function, suggesting that CRY holds potential application value in the clinical treatment of BVDV-related reproductive disorders.
Journal Article
Bergamottin Inhibits Bovine Viral Diarrhea Virus Replication by Suppressing ROS-Mediated Endoplasmic Reticulum Stress and Apoptosis
by
Yin, Jinhua
,
Zhang, Jialu
,
Wang, Jiufeng
in
Animals
,
Antiviral Agents - pharmacology
,
Antiviral drugs
2024
Bovine viral diarrhea virus (BVDV) is one of the most important etiological agents that causes serious economic losses to the global livestock industry. Vaccines usually provide limited efficacy against BVDV due to the emergence of mutant strains. Therefore, developing novel strategies to combat BVDV infection is urgently needed. Bergamottin (Berg), a natural furanocoumarin compound, possesses various pharmaceutical bioactivities, but its effect on BVDV infection remains unknown. The present study aimed to investigate the antiviral effect and underlying mechanism of Berg against BVDV infection. The results showed that Berg exhibited an inhibitory effect on BVDV replication in MDBK cells by disrupting the viral replication and release, rather than directly inactivating virus particles. Mechanistically, Berg inhibits BVDV replication by suppressing endoplasmic reticulum (ER) stress-mediated apoptosis via reducing reactive oxygen species (ROS) generation. Studies in vivo demonstrated that oral gavage of Berg at doses of 50 mg/kg and 75 mg/kg significantly reduced the viral load within the intestines and spleen in BVDV-challenged mice. Furthermore, histopathological damage and oxidative stress caused by BVDV were also mitigated with Berg treatment. Our data indicated that Berg suppressed BVDV propagation both in vitro and in vivo, suggesting it as a promising antiviral option against BVDV.
Journal Article
Quinolinecarboxamides Inhibit the Replication of the Bovine Viral Diarrhea Virus by Targeting a Hot Spot for the Inhibition of Pestivirus Replication in the RNA-Dependent RNA Polymerase
by
Leyssen, Pieter
,
Muigg, Alexandra
,
Pürstinger, Gerhard
in
Animals
,
Antiviral drugs
,
Bacterial infections
2020
The bovine viral diarrhea virus (BVDV), a pestivirus from the family of Flaviviridae is ubiquitous and causes a range of clinical manifestations in livestock, mainly cattle. Two quinolinecarboxamide analogues were identified in a CPE-based screening effort, as selective inhibitors of the in vitro bovine viral diarrhea virus (BVDV) replication, i.e., TO505-6180/CSFCI (average EC50 = 0.07 µM, SD = 0.02 µM, CC50 > 100 µM) and TO502-2403/CSFCII (average EC50 = 0.2 µM, SD = 0.06 µM, CC50 > 100 µM). The initial antiviral activity observed for both hits against BVDV was corroborated by measuring the inhibitory effect on viral RNA synthesis and the production of infectious virus. Modification of the substituents on the quinolinecarboxamide scaffold resulted in analogues that proved about 7-fold more potent (average EC50 = 0.03 with a SD = 0.01 µM) and that were devoid of cellular toxicity, for the concentration range tested (SI = 3333). CSFCII resistant BVDV variants were selected and were found to carry the F224P mutation in the viral RNA-dependent RNA polymerase (RdRp), whereas CSFCI resistant BVDV carried two mutations in the same region of the RdRp, i.e., N264D and F224Y. Likewise, molecular modeling revealed that F224P/Y and N264D are located in a small cavity near the fingertip domain of the pestivirus polymerase. CSFC-resistant BVDV proved to be cross-resistant to earlier reported pestivirus inhibitors (BPIP, AG110, LZ37, and BBP) that are known to target the same region of the RdRp. CSFC analogues did not inhibit the in vitro activity of recombinant BVDV RdRp but inhibited the activity of BVDV replication complexes (RCs). CSFC analogues likely interact with the fingertip of the pestivirus RdRp at the same position as BPIP, AG110, LZ37, and BBP. This indicates that this region is a “hot spot” for the inhibition of pestivirus replication.
Journal Article
Gypenoside Inhibits Bovine Viral Diarrhea Virus Replication by Interfering with Viral Attachment and Internalization and Activating Apoptosis of Infected Cells
by
Yang, Guanghui
,
Zhang, Jialu
,
Wang, Jun
in
Animals
,
antiviral agents
,
Antiviral Agents - pharmacology
2021
Bovine viral diarrhea virus (BVDV) causes a severe threat to the cattle industry due to ineffective control measures. Gypenoside is the primary component of Gynostemma pentaphyllum, which has potential medicinal value and has been widely applied as a food additive and herbal supplement. However, little is known about the antiviral effects of gypenoside. The present study aimed to explore the antiviral activities of gypenoside against BVDV infection. The inhibitory activity of gypenoside against BVDV was assessed by using virus titration and performing Western blotting, quantitative reverse transcription PCR (RT-qPCR), and immunofluorescence assays in MDBK cells. We found that gypenoside exhibited high anti-BVDV activity by interfering with the viral attachment to and internalization in cells. The study showed that BVDV infection inhibits apoptosis of infected cells from escaping the innate defense of host cells. Our data further demonstrated that gypenoside inhibited BVDV infection by electively activating the apoptosis of BVDV-infected cells for execution, as evidenced by the regulation of the expression of the apoptosis-related protein, promotion of caspase-3 activation, and display of positive TUNEL staining; no toxicity was observed in non-infected cells. Collectively, the data identified that gypenoside exerts an anti-BVDV-infection role by inhibiting viral attachment and internalization and selectively purging virally infected cells. Therefore, our study will contribute to the development of a novel prophylactic and therapeutic strategy against BVDV infection.
Journal Article
Melatonin inhibits bovine viral diarrhea virus replication by ER stress-mediated NF-κB signal pathway and autophagy in MDBK cells
by
Wu, Yi
,
Zhang, Jia-Lu
,
Zhao, Yi-Qing
in
Animals
,
Antiviral agents
,
Antiviral Agents - pharmacology
2024
Bovine viral diarrhea-mucosal disease (BVD-MD) is a contagious disease in cattle, caused by the bovine viral diarrhea virus (BVDV). This virus continues to spread globally, exerting pressure on both public health and the economy. Despite its impact, there are currently no effective drugs for treating BVDV. This study utilized Madin-Darby bovine kidney (MDBK) cells as a model to investigate the antiviral effects of melatonin against Bovine Viral Diarrhea Virus (BVDV) and its connection with endoplasmic reticulum (ER) stress. Our results show that melatonin can suppress BVDV proliferation in MDBK cells by modulating the endoplasmic reticulum (ER) stress-mediated NF-κB pathway and autophagy. Specifically, melatonin alleviated ER stress, inhibited the activation of IκBα and p65, regulated autophagy, and reduced the expression levels of pro-inflammatory cytokines. Further, when we treated BVDV-infected cells with the ER stress inducer thapsigargin, it led to significant activation of the NF-κB pathway and autophagy. Conversely, treating the cells with the ER stress inhibitor 4-phenylbutyric acid reversed these effects. These findings suggest that melatonin exerts its antiviral effects primarily through the PERK-eIF2α-ATF4 of ER stress-mediated NF-κB pathway and autophagy. Overall, our study underscores the potential of melatonin as an effective protective and therapeutic option against BVDV, offering insights into its anti-infective mechanisms.
Journal Article
Evaluation of reproductive protection against bovine viral diarrhea virus and bovine herpesvirus-1 afforded by annual revaccination with modified-live viral or combination modified-live/killed viral vaccines after primary vaccination with modified-live viral vaccine
by
Riddell, Kay P.
,
Short, Thomas
,
Rodning, Soren P.
in
Abortion
,
Abortion, Spontaneous - immunology
,
Abortion, Spontaneous - prevention & control
2017
The objective of this study was to compare reproductive protection in cattle against bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1) provided by annual revaccination with multivalent modified-live viral (MLV) vaccine or multivalent combination viral (CV) vaccine containing temperature-sensitive modified-live BoHV-1 and killed BVDV when MLV vaccines were given pre-breeding to nulliparous heifers. Seventy-five beef heifers were allocated into treatment groups A (n=30; two MLV doses pre-breeding, annual revaccination with MLV vaccine), B (n=30; two MLV doses pre-breeding, annual revaccination with CV vaccine) and C (n=15; saline in lieu of vaccine). Heifers were administered treatments on days 0 (weaning), 183 (pre-breeding), 366 (first gestation), and 738 (second gestation). After first calving, primiparous cows were bred, with pregnancy assessment on day 715. At that time, 24 group A heifers (23 pregnancies), 23 group B heifers (22 pregnancies), and 15 group C heifers (15 pregnancies) were commingled with six persistently infected (PI) cattle for 16days. Ninety-nine days after PI removal, cows were intravenously inoculated with BoHV-1. All fetuses and live offspring were assessed for BVDV and BoHV-1. Abortions occurred in 3/23 group A cows, 1/22 group B cows, and 11/15 group C cows. Fetal infection with BVDV or BoHV-1 occurred in 4/23 group A offspring, 0/22 group B offspring, and 15/15 group C offspring. This research demonstrates efficacy of administering two pre-breeding doses of MLV vaccine with annual revaccination using CV vaccine to prevent fetal loss due to exposure to BVDV and BoHV-1.
Journal Article
Screening and Characterization of TAT-Fused Nanobodies Targeting Bovine Viral Diarrhea Virus NS3/NS5A for Antiviral Application
2025
Bovine viral diarrhea virus (BVDV) is a major pathogen responsible for significant economic losses in the global cattle industry. The diverse transmission routes and the characteristics of asymptomatic infections make it difficult to contain the spread; there is an urgent need to develop new effective antiviral strategies. Nanobodies (Nbs) have become a promising new type of antiviral agent due to their advantages, including small molecular size, stable structure, high specificity, and ease of production. This study successfully screened a specific nanobody, Nb7, targeting the key functional protein NS5A of BVDV using phage display technology. Furthermore, the nanobody was effectively delivered into Madin–Darby bovine kidney (MDBK) cells by fusing it with the cell-penetrating peptide TAT. The results demonstrate that TAT-Nb7, specifically targeting the non-structural protein NS5A of BVDV, significantly inhibits viral replication in MDBK cells. In conclusion, this study indicates that TAT-Nb7 holds promise as a therapeutic candidate for the prevention and control of BVDV infection.
Journal Article