Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,745
result(s) for
"Estrogen Antagonists - pharmacology"
Sort by:
A Closer Look at Estrogen Receptor Mutations in Breast Cancer and Their Implications for Estrogen and Antiestrogen Responses
by
Le Goff, Pascale
,
Flouriot, Gilles
,
Clusan, Léa
in
Animals
,
Antineoplastic Agents, Hormonal - pharmacology
,
Antineoplastic Agents, Hormonal - therapeutic use
2021
Breast cancer (BC) is the most common cancer among women worldwide. More than 70% of BC cases express estrogen receptor alpha (ERα), a central transcription factor that stimulates the proliferation of breast cancer cells, usually in the presence of estrogen. While most cases of ER-positive BC initially respond to antiestrogen therapies, a high percentage of cases develop resistance to treatment over time. The recent discovery of mutated forms of ERα that result in constitutively active forms of the receptor in the metastatic-resistance stage of BC has provided a strong rationale for the development of new antiestrogens. These molecules targeting clinically relevant ERα mutants and a combination with other pharmacological inhibitors of specific pathways may constitute alternative treatments to improve clinical practice in the fight against metastatic-resistant ER-positive BC. In this review, we summarize the latest advances regarding the particular involvement of point mutations of ERα in endocrine resistance. We also discuss the involvement of synonymous ERα mutations with respect to co-translational folding of the receptor and ribosome biogenesis in breast carcinogenesis.
Journal Article
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects?
by
Ferrière, François
,
Lecomte, Sylvain
,
Pakdel, Farzad
in
Animals
,
Epigenesis, Genetic - genetics
,
Estrogen Antagonists - pharmacology
2017
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Journal Article
Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach
by
Puranik, Ninad V.
,
John Mary, Dixcy Jaba Sheeba
,
Limaye, Anil M.
in
17β-Estradiol
,
38/47
,
631/114/2248
2019
Most estrogen receptor α (ERα) ligands target the ligand binding domain (LBD). Agonist 17β-estradiol (E
2
) and tamoxifen (TM, known SERM), bind to the same site within the LBD. However, structures of ligand-bound complexes show that E
2
and TM induce different conformations of helix 12 (H12). During the molecular modelling studies of some naturally occurring flavonoids such as quercetin, luteolin, myricetin, kaempferol, naringin, hesperidin, galangin, baicalein and epicatechin with human ERα (3ERT and 1GWR), we observed that most of the ligands bound to the active site pocket of both 3ERT and 1GWR. The docking scores, interaction analyses, and conformation of H12 provided the data to support for the estrogenic or antiestrogenic potential of these flavonoids to a limited degree. Explicit molecular dynamics for 50 ns was performed to identify the stability and compatibility pattern of protein-ligand complex and RMSD were obtained. Baicalein, epicatechin, and kaempferol with 1GWR complex showed similar RMSD trend with minor deviations in the protein backbone RMSD against 1GWR-E
2
complex that provided clear indications that ligands were stable throughout the explicit molecular simulations in the protein and outcome of naringin-3ERT complex had an upward trend but stable throughout the simulations and all molecular dynamics showed stability with less than overall 1 Å deviation throughout the simulations. To examine their estrogenic or antiestrogenic potential, we studied the effect of the flavonoids on viability, progesterone receptor expression and 3xERE/3XERRE-driven reporter gene expression in ERα positive and estrogen responsive MCF-7 breast cancer cells. Epicatechin, myricetin, and kaempferol showed estrogenic potential at 5 µM concentration.
Journal Article
Specific stereochemistry of OP-1074 disrupts estrogen receptor alpha helix 12 and confers pure antiestrogenic activity
by
Hodges-Gallagher, L.
,
Sun, R.
,
Fowler, C. E.
in
13/106
,
60 APPLIED LIFE SCIENCES
,
631/67/1347
2018
Complex tissue-specific and cell-specific signaling by the estrogen receptor (ER) frequently leads to the development of resistance to endocrine therapy for breast cancer. Pure ER antagonists, which completely lack tissue-specific agonist activity, hold promise for preventing and treating endocrine resistance, however an absence of structural information hinders the development of novel candidates. Here we synthesize a small panel of benzopyrans with variable side chains to identify pure antiestrogens in a uterotrophic assay. We identify OP-1074 as a pure antiestrogen and a selective ER degrader (PA-SERD) that is efficacious in shrinking tumors in a tamoxifen-resistant xenograft model. Biochemical and crystal structure analyses reveal a structure activity relationship implicating the importance of a stereospecific methyl on the pyrrolidine side chain of OP-1074, particularly on helix 12.
Estrogen receptor alpha (ERα) plays critical roles in the etiology and treatment of breast cancer. Here the authors synthesize benzopyrans with variable side chains to identify antiestrogenic compounds and characterize OP-1074, a compound that exhibits pure antiestrogenic activity by inducing the degradation of ERα and possesses greater potency than tamoxifen or fulvestrant in a xenograft model.
Journal Article
Dual-mechanism estrogen receptor inhibitors
by
Carlson, Kathryn E.
,
Griffin, Patrick R.
,
Izard, Tina
in
Antiestrogens
,
Binding
,
Biological Sciences
2021
Efforts to improve estrogen receptor-α (ER)–targeted therapies in breast cancer have relied upon a single mechanism, with ligands having a single side chain on the ligand core that extends outward to determine antagonism of breast cancer growth. Here, we describe inhibitors with two ER-targeting moieties, one of which uses an alternate structural mechanism to generate full antagonism, freeing the side chain to independently determine other critical properties of the ligands. By combining two molecular targeting approaches into a single ER ligand, we have generated antiestrogens that function through new mechanisms and structural paradigms to achieve antagonism. These dual-mechanism ER inhibitors (DMERIs) cause alternate, noncanonical structural perturbations of the receptor ligand-binding domain (LBD) to antagonize proliferation in ER-positive breast cancer cells and in allele-specific resistance models. Our structural analyses with DMERIs highlight marked differences from current standard-of-care, single-mechanism antiestrogens. These findings uncover an enhanced flexibility of the ER LBD through which it can access nonconsensus conformational modes in response to DMERI binding, broadly and effectively suppressing ER activity.
Journal Article
G1T48, an oral selective estrogen receptor degrader, and the CDK4/6 inhibitor lerociclib inhibit tumor growth in animal models of endocrine-resistant breast cancer
by
Wardell, Suzanne E.
,
Thatcher, Gregory R. J.
,
Xiong, Rui
in
Animal models
,
Animals
,
Antibodies, Monoclonal, Humanized - pharmacology
2020
Purpose
The combination of targeting the CDK4/6 and estrogen receptor (ER) signaling pathways with palbociclib and fulvestrant is a proven therapeutic strategy for the treatment of ER-positive breast cancer. However, the poor physicochemical properties of fulvestrant require monthly intramuscular injections to patients, which limit the pharmacokinetic and pharmacodynamic activity of the compound. Therefore, an orally available compound that more rapidly reaches steady state may lead to a better clinical response in patients. Here, we report the identification of G1T48, a novel orally bioavailable, non-steroidal small molecule antagonist of ER.
Methods
The pharmacological effects and the antineoplastic mechanism of action of G1T48 on tumors was evaluated using human breast cancer cells (in vitro) and xenograft efficacy models (in vivo).
Results
G1T48 is a potent and efficacious inhibitor of estrogen-mediated transcription and proliferation in ER-positive breast cancer cells, similar to the pure antiestrogen fulvestrant. In addition, G1T48 can effectively suppress ER activity in multiple models of endocrine therapy resistance including those harboring ER mutations and growth factor activation. In vivo, G1T48 has robust antitumor activity in a model of estrogen-dependent breast cancer (MCF7) and significantly inhibited the growth of tamoxifen-resistant (TamR), long-term estrogen-deprived (LTED) and patient-derived xenograft tumors with an increased response being observed with the combination of G1T48 and the CDK4/6 inhibitor lerociclib.
Conclusions
These data show that G1T48 has the potential to be an efficacious oral antineoplastic agent in ER-positive breast cancer.
Journal Article
Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer
by
Rae, James M.
,
Gersch, Christina L.
,
Wang, Shaomeng
in
Antiestrogens
,
Breast cancer
,
Breast Neoplasms - drug therapy
2020
Purpose
Studies have identified several estrogen receptor α (ERα) ligand-binding domain (LBD) somatic mutations in endocrine therapy resistant, metastatic ER-positive breast cancers. The most common mutations, Tyr537Ser (Y537S) and Asp538Gly (D538G), are detected in ~ 30% of endocrine resistant metastatic breast cancer patients. These
ESR1
mutations induce the agonist conformation of ERα, confer an estrogen-independent phenotype, and promote drug resistance to antiestrogens.
Methods
ER-positive, estrogen-dependent MCF-7 cells were engineered to express either the Y537S or D538G mutants using CRISPR knock-in (cY537S and cD538G). These cells were used to screen several estrogen receptor degrader (ERD) compounds synthesized using the Proteolysis Targeting Chimeras (PROTAC) method to induce degradation of ERα via the ubiquitin–proteasome pathway.
Results
Wild-type MCF-7 and ERα LBD mutant cells were treated with ERD-148 (10 pM–1 µM) and assayed for cellular proliferation using the PrestoBlue cell viability assay. ERD-148 attenuated ER-dependent growth with IC
50
values of 0.8, 10.5, and 6.1 nM in MCF-7, cY537S, and cD538G cells, respectively. Western blot analysis showed that MCF-7 cells treated with 1 nM ERD-148 for 24 h exhibited reduced ERα protein expression as compared to the mutants. The ER-regulated gene,
GREB1
, demonstrated significant downregulation in parental and mutant cells after 24 h of ERD-148 treatment at 10 nM. Growth of the ER-negative, estrogen-independent MDA-MB-231 breast cancer cells was not inhibited by ERD-148 at the ~ IC
90
observed in the ER-positive cells.
Conclusion
ERD-148 inhibits the growth of ER-positive breast cancer cells via downregulating ERα with comparable potency to Fulvestrant with marginal non-specific toxicity.
Journal Article
Genomic modelling of the ESR1 Y537S mutation for evaluating function and new therapeutic approaches for metastatic breast cancer
2017
Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations.
Journal Article
Novel pentacyclic derivatives and benzylidenes of the progesterone series cause anti-estrogenic and antiproliferative effects and induce apoptosis in breast cancer cells
2023
The promising antitumor effects of progesterone derivatives have been identified in many studies. However, the specific mechanism of action of this class of compounds has not been fully described. Therefore, in this study, we investigated the antiproliferative and (anti)estrogenic activities of novel pentacyclic derivatives and benzylidenes of the progesterone series. The antiproliferative effects of the compounds were evaluated on hormone-dependent MCF7 breast cancer cells using the MTT test. Estrogen receptor α (ERα) activity was assessed by a luciferase-based reporter assay. Immunoblotting was used to evaluate the expression of signaling proteins. All benzylidenes demonstrated inhibitory effects with IC50 values below 10 µM, whereas pentacyclic derivatives were less active. These patterns may be associated with the lability of the geometry of benzylidene molecules, which contributes to an increase in the affinity of interaction with the receptor. The selected compounds showed significant anti-estrogenic potency. Benzylidene 1d ((8 S,9 S,10R,13 S,14 S,17 S)-17-[(2E)-3-(4-fluorophenyl)prop-2-enoyl]-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15-decahydrocyclopenta[a]phenanthren-3-one) was the most active in antiproliferative and anti-estrogenic assays. Apoptosis induced by compound 1d was accompanied by decreases in CDK4, ERα, and Cyclin D1 expression. Compounds 1d and 3d were characterized by high inhibitory potency against resistant breast cancer cells. Apoptosis induced by the leader compounds was confirmed by PARP cleavage and flow cytometry analysis. Compound 3d caused cell arrest in the G2/M phase. Further analysis of novel derivatives of the progesterone series is of great importance for medicinal chemistry, drug design, and oncology.
Journal Article
A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation
by
Wolf, Yochai
,
Varol, Diana
,
Goldmann, Tobias
in
631/378/1689/1666
,
631/378/2596/1953
,
631/378/371
2013
In this study, the authors generate a new mouse model that allows selective genetic targeting of microglial cells. Using this model, they show that elimination of TGF-β-activated kinase 1 (TAK1) specifically in microglial cells reduces pathology in a mouse model of multiple sclerosis by inhibiting NF-κB, ERK and JNK signaling pathways.
Microglia are brain macrophages and, as such, key immune-competent cells that can respond to environmental changes. Understanding the mechanisms of microglia-specific responses during pathologies is hence vital for reducing disease burden. The definition of microglial functions has so far been hampered by the lack of genetic
in vivo
approaches that allow discrimination of microglia from closely related peripheral macrophage populations in the body. Here we introduce a mouse experimental system that specifically targets microglia to examine the role of a mitogen-associated protein kinase kinase kinase (MAP3K), transforming growth factor (TGF)-β-activated kinase 1 (TAK1), during autoimmune inflammation. Conditional depletion of TAK1 in microglia only, not in neuroectodermal cells, suppressed disease, significantly reduced CNS inflammation and diminished axonal and myelin damage by cell-autonomous inhibition of the NF-κB, JNK and ERK1/2 pathways. Thus, we found TAK1 to be pivotal in CNS autoimmunity, and we present a tool for future investigations of microglial function in the CNS.
Journal Article