Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
557
result(s) for
"Fabry Disease - metabolism"
Sort by:
Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study
by
Narita, Ichiei
,
Kirk, John
,
Hamazaki, Takashi
in
1-Deoxynojirimycin - administration & dosage
,
1-Deoxynojirimycin - adverse effects
,
1-Deoxynojirimycin - analogs & derivatives
2017
BackgroundFabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking.MethodsThe main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed.ResultsFifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (−6.6 g/m2 (−11.0 to −2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated.ConclusionsMigalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations.Trial registration number:NCT00925301; Pre-results.
Journal Article
PrimeDesign software for rapid and simplified design of prime editing guide RNAs
2021
Prime editing (PE) is a versatile genome editing technology, but design of the required guide RNAs is more complex than for standard CRISPR-based nucleases or base editors. Here we describe PrimeDesign, a user-friendly, end-to-end web application and command-line tool for the design of PE experiments. PrimeDesign can be used for single and combination editing applications, as well as genome-wide and saturation mutagenesis screens. Using PrimeDesign, we construct PrimeVar, a comprehensive and searchable database that includes candidate prime editing guide RNA (pegRNA) and nicking sgRNA (ngRNA) combinations for installing or correcting >68,500 pathogenic human genetic variants from the ClinVar database. Finally, we use PrimeDesign to design pegRNAs/ngRNAs to install a variety of human pathogenic variants in human cells.
Prime editing guide RNA design is more complex than for standard CRISPR-based nucleases or base editors. Here the authors present PrimeDesign and PrimeVar for the rapid and simplified design of pegRNA and ngRNA combinations.
Journal Article
Chaperone Therapy in Fabry Disease
by
Herrmann, Ken
,
Vardarli, Irfan
,
Jovanovic, Ana
in
1-Deoxynojirimycin - analogs & derivatives
,
1-Deoxynojirimycin - pharmacology
,
1-Deoxynojirimycin - therapeutic use
2022
Fabry disease is an X-linked lysosomal multisystem storage disorder induced by a mutation in the alpha-galactosidase A (GLA) gene. Reduced activity or deficiency of alpha-galactosidase A (AGAL) leads to escalating storage of intracellular globotriaosylceramide (GL-3) in numerous organs, including the kidneys, heart and nerve system. The established treatment for 20 years is intravenous enzyme replacement therapy. Lately, oral chaperone therapy was introduced and is a therapeutic alternative in patients with amenable mutations. Early starting of therapy is essential for long-term improvement. This review describes chaperone therapy in Fabry disease.
Journal Article
Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease
by
Faro, Denise Cristiana
,
Monte, Ines Paola
,
Di Pino, Francesco Lorenzo
in
alpha-Galactosidase - metabolism
,
Animals
,
Cardiac arrhythmia
2024
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Journal Article
Cardiac manifestations of Fabry disease in G3Stg/GlaKO and GlaKO mouse models–Translation to Fabry disease patients
by
Zhao, Meng
,
Islam, Rizwana
,
Boukharov, Natalia
in
a-Galactosidase
,
Abnormalities
,
Accumulation
2024
Fabry disease (FD) is an X-linked disorder of glycosphingolipid metabolism caused by mutations in the GLA gene encoding alpha-galactosidase A (α-Gal). Loss of α-Gal activity leads to progressive lysosomal accumulation of α-Gal substrate, predominately globotriaosylceramide (Gb3) and its deacylated derivative globotriaosylsphingosine (lyso‐Gb3). FD manifestations include early onset neuropathic pain, gastrointestinal symptoms, and later onset life-threatening renal, cardiovascular and cerebrovascular disorders. Current treatments can preserve kidney function but are not very effective in preventing progression of cardiovascular pathology which remains the most common cause of premature death in FD patients. There is a significant need for a translational model that could be used for testing cardiac efficacy of new drugs. Two mouse models of FD have been developed. The α-Gal A-knockout (
Gla
KO) model is characterized by progressive tissue accumulation of Gb3 and lyso-Gb3 but does not develop any Fabry pathology besides mild peripheral neuropathy. Reports of minor cardiac function abnormalities in
Gla
KO model are inconsistent between different studies. Recently, G3Stg/
Gla
KO was generated by crossbreeding
Gla
KO with transgenic mice expressing human Gb3 synthase. G3Stg/
Gla
KO demonstrate higher tissue substrate accumulation and develop cellular and tissue pathologies. Functional renal pathology analogous to that found in early stages of FD has also been described in this model. The objective of this study is to characterize cardiac phenotype in
Gla
KO and G3Stg/
Gla
KO mice using echocardiography. Longitudinal assessments of cardiac wall thickness, mass and function were performed in
Gla
KO and wild-type (WT) littermate controls from 5–13 months of age. G3Stg/
Gla
KO and WT mice were assessed between 27–28 weeks of age due to their shortened lifespan. Several cardiomyopathy characteristics of early Fabry pathology were found in
Gla
KO mice, including mild cardiomegaly [up-to-25% increase in left ventricular (LV mass)] with no significant LV wall thickening. The LV internal diameter was significantly wider (up-to-24% increase at 9-months), when compared to the age-matched WT. In addition, there were significant increases in the end-systolic, end-diastolic volumes and stroke volume, suggesting volume overload. Significant reduction in Global longitudinal strain (GLS) measuring local myofiber contractility of the LV was also detected at 13-months. Similar GLS reduction was also reported in FD patients. Parameters such as ejection fraction, fractional shortening and cardiac output were either only slightly affected or were not different from controls. On the other hand, some of the cardiac findings in G3Stg/
Gla
KO mice were inconsistent with Fabry cardiomyopathy seen in FD patients. This could be potentially an artifact of the Gb3 synthase overexpression under a strong ubiquitous promoter. In conclusion,
Gla
KO mouse model presents mild cardiomegaly, mild cardiac dysfunction, but significant cardiac volume overload and functional changes in GLS that can be used as translational biomarkers to determine cardiac efficacy of novel treatment modalities. The level of tissue Gb3 accumulation in G3Stg/
Gla
KO mouse more closely recapitulates the level of substrate accumulation in FD patients and may provide better translatability of the efficacy of new therapeutics in clearing pathological substrates from cardiac tissues. But interpretation of the effect of treatment on cardiac structure and function in this model should be approached with caution.
Journal Article
Therapeutic effects of lomerizine on vasculopathy in Fabry disease
by
Kim, Taek-Min
,
Chung, Won-Suk
,
Lee, Beom Hee
in
631/154/1435
,
631/532/2064/2158
,
alpha-Galactosidase - genetics
2025
Fabry disease (FD) is a lysosomal storage disorder in which α-galactosidase (GLA) deficiency leads to a build-up of globo-triaosylceramide (Gb3) in various cell types. Gb3 accumulation leads to the abnormalities of microvascular function associated with FD. Previously, we discovered significant abnormalities in vascular endothelial cells (VECs) derived from FD-induced pluripotent stem cells. We then used a cell-based system to screen a group of clinical compounds for candidates capable of rescuing those abnormalities. Lomerizine was one of the most promising candidates because it alleviated a variety of FD-associated phenotypes both in vitro and in vivo. Lomerizine reduced mitochondria Ca
2+
levels, ROS generation, and the maximal respiration of FD-VECs in vitro. This led to a suppression of the endothelial-to-mesenchymal transition (EndMT) and rescued FD-VEC function. Furthermore, FD-model mice (Gla−/−/TSP1Tg) treated orally with lomerizine for 6 months showed clear improvement of several FD phenotypes, including left ventricular hypertrophy, renal fibrosis, anhidrosis, and heat intolerance. Thus, our results suggest lomerizine as a novel candidate for FD therapy.
Journal Article
Fabry Disease With Concomitant Lewy Body Disease
by
Feldengut, Simone
,
Braak, Heiko
,
Jacob, Christian
in
alpha-Synuclein - metabolism
,
Astrocytes - pathology
,
Brain - blood supply
2020
Abstract
Although Gaucher disease can be accompanied by Lewy pathology (LP) and extrapyramidal symptoms, it is unknown if LP exists in Fabry disease (FD), another progressive multisystem lysosomal storage disorder. We aimed to elucidate the distribution patterns of FD-related inclusions and LP in the brain of a 58-year-old cognitively unimpaired male FD patient suffering from predominant hypokinesia. Immunohistochemistry (CD77, α-synuclein, collagen IV) and neuropathological staging were performed on 100-µm sections. Tissue from the enteric or peripheral nervous system was unavailable. As controls, a second cognitively unimpaired 50-year-old male FD patient without LP or motor symptoms and 3 age-matched individuals were examined. Inclusion body pathology was semiquantitatively evaluated. Although Lewy neurites/bodies were not present in the 50-year-old individual or in controls, severe neuronal loss in the substantia nigra pars compacta and LP corresponding to neuropathological stage 4 of Parkinson disease was seen in the 58-year-old FD patient. Major cerebrovascular lesions and/or additional pathologies were absent in this individual. We conclude that Lewy body disease with parkinsonism can occur within the context of FD. Further studies determining the frequencies of both inclusion pathologies in large autopsy-controlled FD cohorts could help clarify the implications of both lesions for disease pathogenesis, potential spreading mechanisms, and therapeutic interventions.
Journal Article
Biomarkers in Anderson-Fabry Disease
by
Tuttolomondo, Antonino
,
Daidone, Mario
,
Pinto, Antonio
in
Animals
,
Biomarkers - analysis
,
Fabry Disease - diagnosis
2020
Fabry disease is a rare lysosomal storage disorder caused by a deficiency of α-galactosidase A, resulting in multisystemic involvement. Lyso-Gb3 (globotriaosylsphingosine), the deacylated form of Gb3, is currently measured in plasma as a biomarker of classic Fabry disease. Intensive research of biomarkers has been conducted over the years, in order to detect novel markers that may potentially be used in clinical practice as a screening tool, in the context of the diagnostic process and as an indicator of response to treatment. An interesting field of application of such biomarkers is the management of female heterozygotes who present difficulty in predictable clinical progression. This review aims to summarise the current evidence and knowledge about general and specific markers that are actually measured in subjects with confirmed or suspected Fabry disease; moreover, we report potential novel markers such as microRNAs. Recent proteomic or metabolomic studies are in progress bringing out plasma proteome profiles in Fabry patients: this assessment may be useful to characterize molecular pathology of the disease, to improve diagnostic process, and to monitor response to treatment. The management of Fabry disease may be improved by the identification of biomarkers that reflect clinical course, severity, and the progression of the disease.
Journal Article
Time to treatment benefit for adult patients with Fabry disease receiving agalsidase β: data from the Fabry Registry
by
Germain, Dominique P
,
Wanner, Christoph
,
Warnock, David G
in
Adult
,
alpha-Galactosidase - metabolism
,
alpha-Galactosidase - therapeutic use
2016
BackgroundAgalsidase β is a form of enzyme replacement therapy for Fabry disease, a genetic disorder characterised by low α-galactosidase A activity, accumulation of glycosphingolipids and life-threatening cardiovascular, renal and cerebrovascular events. In clinical trials, agalsidase β cleared glycolipid deposits from endothelial cells within 6 months; clearance from other cell types required sustained treatment. We hypothesised that there might be a ‘lag time’ to clinical benefit after initiating agalsidase β treatment, and analysed the incidence of severe clinical events over time in patients receiving agalsidase β.MethodsThe incidence of severe clinical events (renal failure, cardiac events, stroke, death) was studied in 1044 adult patients (641 men, 403 women) enrolled in the Fabry Registry who received agalsidase β (average dose 1 mg/kg every 2 weeks) for up to 5 years.ResultsThe incidence of all severe clinical events was 111 per 1000 person-years (95% CI 84 to 145) during the first 6 months. After 6 months, the incidence decreased and remained stable within the range of 40–58 events per 1000 patient-years. The largest decrease in incidence rates was among male patients and those aged ≥40 years when agalsidase β was initiated.ConclusionsContrary to the expected increased incidence of severe clinical events with time, adult patients with Fabry disease had decreased incidence of severe clinical events after 6 months treatment with agalsidase β 1 mg/kg every 2 weeks.Trial registration numberNCT00196742.
Journal Article
Complement activation and cellular inflammation in Fabry disease patients despite enzyme replacement therapy
by
Ehlers-Jeske, Elvira
,
Lenders, Malte
,
Köhl, Jörg
in
a-Galactosidase
,
Blood pressure
,
Body fluids
2024
Defective α-galactosidase A (AGAL/GLA) due to missense or nonsense mutations in the GLA gene results in accumulation of the glycosphingolipids globotriaosylceramide (Gb3) and its deacylated derivate globotriaosylsphingosine (lyso-Gb3) in cells and body fluids. The aberrant glycosphingolipid metabolism leads to a progressive lysosomal storage disorder, i. e. Fabry disease (FD), characterized by chronic inflammation leading to multiorgan damage. Enzyme replacement therapy (ERT) with agalsidase-alfa or -beta is one of the main treatment options facilitating cellular Gb3 clearance. Proteome studies have shown changes in complement proteins during ERT. However, the direct activation of the complement system during FD has not been explored. Here, we demonstrate strong activation of the complement system in 17 classical male FD patients with either missense or nonsense mutations before and after ERT as evidenced by high C3a and C5a serum levels. In contrast to the strong reduction of lyso-Gb3 under ERT, C3a and C5a markedly increased in FD patients with nonsense mutations, most of whom developed anti-drug antibodies (ADA), whereas FD patients with missense mutations, which were ADA-negative, showed heterogenous C3a and C5a serum levels under treatment. In addition to the complement activation, we found increased IL-6, IL-10 and TGF-ß1 serum levels in FD patients. This increase was most prominent in patients with missense mutations under ERT, most of whom developed mild nephropathy with decreased estimated glomerular filtration rate. Together, our findings demonstrate strong complement activation in FD independent of ERT therapy, especially in males with nonsense mutations and the development of ADAs. In addition, our data suggest kidney cell-associated production of cytokines, which have a strong potential to drive renal damage. Thus, chronic inflammation as a driver of organ damage in FD seems to proceed despite ERT and may prove useful as a target to cope with progressive organ damage.
Journal Article