Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
15,848 result(s) for "Food Allergen"
Sort by:
A reference method for determining the total allergenic protein content in a processed food: the case of milk in cookies as proof of concept
The establishment of a reference method for the determination of the allergen protein content in a processed food material has been explored. An analytical approach was developed to enable the comparability of food allergen measurement results expressed in a decision-relevant manner. A proof of concept is here presented, resulting in quantity values for the common measurand, namely ‘mass of total allergen protein per mass of food’. The quantities are determined with SI traceability to enable the comparability of reported results. A method for the quantification of total milk protein content in an incurred baked food at a concentration level clinically relevant is presented. The strategy on how to obtain the final analytical result is outlined. Challenges associated with this method are discussed, in particular the optimal extraction of the marker proteins, the complete digestion and release of the peptides in an equimolar fashion, the use of conversion factors to translate the amount of measured proteins into total milk protein and the estimation of the uncertainty contributions as well as of the combined uncertainty of the final result. The implementation of such a reference method for the determination of the total allergen content in a processed food is an important step, which will provide comparable measurement data of relevance to risk assessors.
Robustness Testing of the xMAP Food Allergen Detection Assay: A Multiplex Assay for the Simultaneous Detection of Food Allergens
The xMAP food allergen detection assay (xMAP FADA) can simultaneously detect 15 analytes (14 food allergens plus gluten) in one analysis. The xMAP FADA typically employs two antibody bead sets per analyte, providing built-in confirmation that is not available with other antibody-based assays. Before an analytical method can be used, its reliability must be assessed when conditions of the assay procedure are altered. This study was conducted to determine the effects on assay performance associated with changes in incubation temperature, amounts of the antibody bead cocktail, and concentrations of detection antibody and β-mercaptoethanol in the reduced-denatured extraction buffer. The analysis of buffered-detergent extracts revealed lower responses at 22°C than at 37°C, but temperature had no effect on the analysis of reduced-denatured extracts. Changes in β-mercaptoethanol and detection antibody concentrations had an effect on the detection of only milk in the reduced-denatured extracts. A slight change in the measured bead count was observed when one-fourth of the bead cocktail was used, and a large decrease in the bead count was noted when one-eighth of the recommended amount was used, but this number (≥25) was still sufficient to provide reliable results. Overall, the xMAP FADA was very robust to changes in the assay procedure, which may inadvertently occur.
Food allergen sensitization on a chip: the gut–immune–skin axis
Food allergen sensitization is characterized by a type 2 immune response towards a specific food protein and can adversely affect the patient after re-exposure of this food allergen.The gut, skin, and lymph nodes (including immune cells) are interconnected key organs in food allergen sensitization.Gut and skin organ-on-a-chip (OoC) devices have been developed with an immune component to recapitulate the 3D epithelial cell–immune cell crosstalk, although specialized gut–immune–skin OoC models to study food protein sensitizing allergenicity capacity are not available yet.The inclusion of compartmentalized innate and adaptive immune cells is crucial to mimic the immune cascade in the gut–immune–skin axis in a stepwise manner.Engineering a gut–immune–skin axis OoC can better evaluate food allergen sensitization in the future and advance mechanistic insight. The global population is growing, rapidly increasing the demand for sustainable, novel, and safe food proteins with minimal risks of food allergy. In vitro testing of allergy-sensitizing capacity is predominantly based on 2D assays. However, these lack the 3D environment and crosstalk between the gut, skin, and immune cells essential for allergy prediction. Organ-on-a-chip (OoC) technologies are promising to study type 2 immune activation required for sensitization, initiated in the small intestine or skin, in interlinked systems. Increasing the mechanistic understanding and, moreover, finding new strategies to study interorgan communication is of importance to recapitulate food allergen sensitization in vitro. Here, we outline recently developed OoC platforms and discuss the features needed for reliable prediction of sensitizing allergenicity of proteins. The global population is growing, rapidly increasing the demand for sustainable, novel, and safe food proteins with minimal risks of food allergy. In vitro testing of allergy-sensitizing capacity is predominantly based on 2D assays. However, these lack the 3D environment and crosstalk between the gut, skin, and immune cells essential for allergy prediction. Organ-on-a-chip (OoC) technologies are promising to study type 2 immune activation required for sensitization, initiated in the small intestine or skin, in interlinked systems. Increasing the mechanistic understanding and, moreover, finding new strategies to study interorgan communication is of importance to recapitulate food allergen sensitization in vitro. Here, we outline recently developed OoC platforms and discuss the features needed for reliable prediction of sensitizing allergenicity of proteins.
Responses of consumers with food allergy to the new allergen-labelling legislation in Saudi Arabia: a preliminary survey
Preventing a food allergy reaction depends primarily on eliminating allergens from the diet. In October 2019, the Saudi Food and Drug Authority (SFDA) introduced new legislation requiring food establishments providing and selling non-prepacked foods to state the presence of the top fourteen food allergens on their menus. The current study aimed to assess the allergen-labelling knowledge, practices, preferences and perceptions towards the new SFDA allergen-labelling legislation among consumers with food allergy in Saudi Arabia. Observational cross-sectional study using an online questionnaire. Saudi Arabia; February - March 2020. Residents of Saudi Arabia with food allergy (n 427), aged 18-70 years. Among participants, only 28·1 % knew that there were governmental regulations in Saudi Arabia regarding food-allergen labelling and approximately two-thirds (67 %) check labels on prepacked food products for allergens. The majority of the participants preferred food products carrying safety statements (84·1 %) and symbols (80·1 %). A total of 47·1 % were aware that regulations in Saudi Arabia require allergens to be declared in ingredient lists, while 51·3 % were aware that advisory allergen labelling is not required by law. Only 26·2 % were aware of the new SFDA legislation regarding provision of allergen information by food establishments. However, the majority (94·4 %) were supportive of the new legislation, and most of them were more likely to eat at restaurants that reported allergen information for food items on the menu. The new SFDA food allergen-labelling legislation needs to be more widely and effectively disseminated to increase the level of awareness among adults with food allergy in Saudi Arabia.
Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests
Enzyme-linked immunosorbent assay (ELISA) is commonly used to determine food allergens in food products. However, a significant number of ELISAs give an erroneous result, especially when applied to highly processed food. Accordingly, an improved ELISA, which utilizes an extraction solution comprising the surfactant sodium lauryl sulfate (SDS) and reductant 2-mercaptoethanol (2-ME), has been specially developed to analyze food allergens in highly processed food by enhancing analyte protein extraction. Recently, however, the use of 2-ME has become undesirable. In the present study, a new extraction solution containing a human- and eco-friendly reductant, which is convenient to use at the food manufacturing site, has been established. Among three chemicals with different reducing properties, sodium sulfite, tris(3-hydroxypropyl)phosphine, and mercaptoethylamine sodium sulfite was selected as a 2-ME substitute. The protein extraction ability of SDS/0.1 M sodium sulfite solution was comparable to that of SDS/2-ME solution. Next, the ELISA performance for egg, milk, wheat, peanut, and buckwheat was evaluated by using model-processed foods and commercially available food products. The data showed that the SDS/0.1 M sulfite ELISA significantly correlated with the SDS/2-ME ELISA for all food allergens examined ( p  < 0.01), thereby establishing the validity of the SDS/0.1 M sulfite ELISA performance. Furthermore, the new SDS/0.1 M sulfite solution was investigated for its applicability to the lateral-flow (LF) test. The result demonstrated the successful analysis of food allergens in processed food, showing consistency with the SDS/0.1 M sulfite ELISA results. Accordingly, a harmonized analysis system for processed food comprising a screening LF test and a quantitative ELISA with identical extraction solution has been established. The ELISA based on the SDS/0.1 M sulfite extraction solution has now been authorized as the revised official method for food allergen analysis in Japan.
Extension of xMAP Food Allergen Detection Assay to Include Sesame
An estimated 0.1 to 0.2% of the North American population is allergic to sesame, and deaths due to anaphylactic shock have been reported. Detecting and quantifying sesame in various food samples is critical to safeguard the allergic population by ensuring accurate ingredient labeling. Because of the modular nature of the xMAP Food Allergen Detection Assay (FADA), it was possible through method extension to add sesame as a validated additional analyte. Because raw and toasted sesame are both commonly used and the two display significantly different antigenicity, three antibodies, one monoclonal and two polyclonal, were conjugated to bead sets to ensure reliable detection. The modified xMAP FADA successfully detected sesame incurred or spiked in baked muffins, spice mix, canola oil, and in both raw and toasted sesame oils with limit of quantitation values ≤ 1.3 ppm of sesame. Canola oil, sesame oil, toasted sesame oil, and olive oil inhibited sesame detection, as did the detection of sesame incurred in foods containing oil (e.g., hummus). Despite this inhibition, the xMAP FADA was still able to reliably detect sesame at levels throughout the dynamic range of the assay (22 to 750 ng of protein per mL) in all the foods examined. Further, the high signal-to-noise ratio of the lowest calibration standard and preliminary studies conjugating the antibodies at higher concentrations indicate an ability to increase the sensitivity of the assay should the need arise.
Application of Multiantigen Profiling To Detect Pecan
A problem often encountered in the detection and identification of undeclared tree nut food allergens is the lack of analytical methods. This problem is accentuated by the current trend, whereby the primary methods used to detect food allergens are antibody-based enzyme-linked immunosorbent assays (ELISAs) and the development of analyte-specific antibodies takes months. The recently developed xMAP food allergen detection assay (xMAP FADA) has the ability to generate multiantigen profiles with tree nuts, thereby providing a potential solution to this problem. The xMAP FADA includes 22 antibodies targeting peanut, soy, and nine tree nuts. The high number of antibodies to a diverse group of tree nuts and legumes and the propensity of tree nuts to cross-react have enabled the development of multiantigen profiling, whereby an analyte reacts with the various antibodies to generate a profile. Recently, a question arose regarding the possible presence of pecan dust at a manufacturer of pecan products that also stored fresh produce. The lack of suitable pecan ELISAs created an analytical challenge that was resolved using multiantigen profiling with the xMAP FADA. Pecan was detected on swab samples by using multiantigen profiling and confirmed by DNA analysis. The use of multiantigen profiling provided an analytical capability beyond what was possible with an analyte-specific analytical method.
Sources of Allergens Detected Through Allergen-Specific Serum IgE Antibody Test in Children with Suspected Allergic Diseases in Central China
Although allergic diseases in children are on the rise, there has been no comprehensive investigation of the allergens affecting children with allergic diseases in central China. Therefore, we aimed to analyze the distribution of serum allergen species among children with allergic conditions in central China to inform the prevention, diagnosis, and treatment of childhood allergies. A total of 9213 children (5543 males with 2.88 ± 0.04 years old and 3670 females with 2.91 ± 0.05 years old) underwent allergen screening, and serum allergen-specific IgE (sIgE) antibodies were detected using an automated fluorescent enzyme immunoassay system. Our findings revealed a total sIgE-positive rate (sIgE-PR) of 57.83%, with mixed food (42.10%), egg whites (30.83%), milk (28.97%), mixed dust mites (24.57%), and mixed molds (23.20%) being the most prevalent source of allergens. The sIgE-PR for common sources of allergens exhibited significant sex-based differences, with males having greater susceptibility than females (p<0.05). Dust mites were the primary source of inhaled allergens, whereas egg white was the predominant source of food allergens. Sources of food allergens were most dominant among infants (0-3 years old); sIgE-PRs for most source of food allergens decreased with age, whereas those for most source of inhaled allergens increased. The autumn sIgE-PRs for mixed molds, weed pollen combinations, and tree pollen combinations were significantly higher than those found in other seasons (p<0.05). Our findings suggest that sources of allergens profiles in children with allergies vary across age groups and seasons. Understanding these patterns can improve the effective prevention of childhood allergies.
Production of a Recombinant Single-Domain Antibody for Gluten Detection in Foods Using the Pichia pastoris Expression System
The detection of gluten in foodstuffs has become a growing concern in food allergen management as a result of the high ratio of population sensitive to the main gluten-containing cereals. In this study, a promising single-domain antibody previously isolated by phage display (dAb8E) was produced in Pichia pastoris resulting in high levels of the antibody fragment expression (330 mg/L). The purified dAb8E was proved to specifically bind to gluten proteins from wheat, barley and rye, exhibiting no cross reaction to other heterologous species. The dynamic range of the sandwich enzyme-linked immunosorbent assay (ELISA) covered 0.1 to 10 µg/mL of gliadin, reaching a limit of detection of 0.12 µg/mL. When experimental binary mixtures of the target cereals were analyzed, the limit of detection was 0.13 mg/g, which would theoretically correspond to gluten concentrations of approximately 13 mg/kg. Finally, thirty commercially available food products were analyzed by means of the developed assay to further confirm the applicability of the dAb8E for gluten determination. The proposed methodology enabled the generation of a new gluten-specific nanobody which could be used to guarantee the appropriate labelling of gluten-free foods.
Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays
In this critical review, we provide a comprehensive overview of immunochemical food allergen assays and detectors in the context of their user-friendliness, through their connection to smartphones. Smartphone-based analysis is centered around citizen science, putting analysis into the hands of the consumer. Food allergies represent a significant worldwide health concern and consumers should be able to analyze their foods, whenever and wherever they are, for allergen presence. Owing to the need for a scientific background, traditional laboratory-based detection methods are generally unsuitable for the consumer. Therefore, it is important to develop simple, safe, and rapid assays that can be linked with smartphones as detectors to improve user accessibility. Smartphones make excellent detection systems because of their cameras, embedded flash functions, portability, connectivity, and affordability. Therefore, this review has summarized traditional laboratory-based methods for food allergen detection such as enzyme-linked-immunosorbent assay, flow cytometry, and surface plasmon resonance, and the potential to modernize these methods by interfacing them with a smartphone readout system, based on the aforementioned smartphone characteristics. This is the first review focusing on smartphone-based food-allergen detection methods designed with the intention of being consumer-friendly.