Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
181 result(s) for "Genetic Predisposition to Disease -- France"
Sort by:
Preventive strikes : women, precancer, and prophylactic surgery
Winner, 2011 Best Book in the History of Medicine, European Association for the History of Medicine and Health Modern scientific tools can identify a genetic predisposition to cancer before any disease is detectable. Some women will never develop breast or ovarian cancer, but they nevertheless must decide, as a result of genetic testing, whether to have their breasts and ovaries removed to avoid the possibility of disease. The striking contrast between the sophistication of diagnosis and the crudeness of preventive surgery forms the basis of historian Ilana Löwy's important study. Löwy traces the history of prophylactic amputations through a century of preventive treatment and back to a long tradition of surgical management of gynecological problems. In the early twentieth century, surgeons came to believe that removing precancerous lesions—a term difficult to define even today—averted the danger of malignancy. This practice, Löwy finds, later led to surgical interventions for women with a hereditary predisposition to cancer but no detectable disease. Richly detailed stories of patients and surgeons in the United States, France, and the United Kingdom allow Löwy to compare the evolution of medical thought and practice—and personal choice—in these different cultures. Preventive Strikes aims to improve our understanding of professional, social, and cultural responses to cancer in the twenty-first century and to inform our reflections about how values are incorporated into routine medical practices.Ilana Löwy
Genetic burden linked to founder effects in Saguenay–Lac-Saint-Jean illustrates the importance of genetic screening test availability
The Saguenay–Lac-Saint-Jean (SLSJ) region located in the province of Quebec was settled in the 19th century by pioneers issued from successive migration waves starting in France in the 17th century and continuing within Quebec until the beginning of the 20th century. The genetic structure of the SLSJ population is considered to be the product of a triple founder effect and is characterised by a higher prevalence of some rare genetic diseases. Several studies were performed to elucidate the historical, demographic and genetic background of current SLSJ inhabitants to assess the origins of these rare disorders and their distribution in the population. Thanks to the development of new sequencing technologies, the genes and the variants responsible for the most prevalent conditions were identified. Combined with other resources such as the BALSAC population database, identifying the causal genes and the pathogenic variants allowed to assess the impacts of some of these founder mutations on the population health and to design precision medicine public health strategies based on carrier testing. Furthermore, it stimulated the establishment of many public programmes.We report here a review and an update of a subset of inherited disorders and founder mutations in the SLSJ region. Data were collected from published scientific sources. This work expands the knowledge about the current frequencies of these rare disorders, the frequencies of other rare genetic diseases in this population, the relevance of the carrier tests offered to the population, as well as the current available treatments and research about future therapeutic avenues for these inherited disorders.
Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma
Maria Teresa Landi and colleagues identify a rare missense variant in POT1 shared by five melanoma-prone families from Italy and associated with increased telomere length and telomere fragility. They also identify additional familial melanoma cases with rare missense variants in POT1 and find a significant excess of rare exonic POT1 variants in melanoma cases compared to controls, implicating POT1 variants in melanoma susceptibility. Although CDKN2A is the most frequent high-risk melanoma susceptibility gene, the underlying genetic factors for most melanoma-prone families remain unknown. Using whole-exome sequencing, we identified a rare variant that arose as a founder mutation in the telomere shelterin gene POT1 (chromosome 7, g.124493086C>T; p.Ser270Asn) in five unrelated melanoma-prone families from Romagna, Italy. Carriers of this variant had increased telomere lengths and numbers of fragile telomeres, suggesting that this variant perturbs telomere maintenance. Two additional rare POT1 variants were identified in all cases sequenced in two separate Italian families, one variant per family, yielding a frequency for POT1 variants comparable to that for CDKN2A mutations in this population. These variants were not found in public databases or in 2,038 genotyped Italian controls. We also identified two rare recurrent POT1 variants in US and French familial melanoma cases. Our findings suggest that POT1 is a major susceptibility gene for familial melanoma in several populations.
SORL1 rare variants: a major risk factor for familial early-onset Alzheimer’s disease
The SORL1 protein plays a protective role against the secretion of the amyloid β peptide, a key event in the pathogeny of Alzheimer’s disease. We assessed the impact of SORL1 rare variants in early-onset Alzheimer’s disease (EOAD) in a case–control setting. We conducted a whole exome analysis among 484 French EOAD patients and 498 ethnically matched controls. After collapsing rare variants (minor allele frequency ≤1%), we detected an enrichment of disruptive and predicted damaging missense SORL1 variants in cases (odds radio (OR)=5.03, 95% confidence interval (CI)=(2.02–14.99), P =7.49.10 −5 ). This enrichment was even stronger when restricting the analysis to the 205 cases with a positive family history (OR=8.86, 95% CI=(3.35–27.31), P =3.82.10 −7 ). We conclude that predicted damaging rare SORL1 variants are a strong risk factor for EOAD and that the association signal is mainly driven by cases with positive family history.
A genome-wide association study identifies novel risk loci for type 2 diabetes
Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case–control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing β-cells, and two linkage disequilibrium blocks that contain genes potentially involved in β-cell development or function ( IDE–KIF11–HHEX and EXT2–ALX4 ). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits. Diabetes in the genes Overeating and physical inactivity are major causes of type 2 diabetes mellitus, but they affect only genetically susceptible individuals and the genetic basis of the disease is notoriously complex. Recent research has suggested that specific genes may be associated with the risk of developing the disease, however. Now a genome-wide search using high-density genotyping arrays has identified four previously unknown genes as diabetes risk factors, and confirmed a known association with the TCF7L2 gene. Together these five genes may contribute a sizeable fraction of the disease risk in type 2 diabetes, and analysis of their function should clarify the pathogenesis of diabetes and point to new drug targets. In addition, individuals shown to have these mutations could minimize their risk by adjusting diet. A survey of the entire human genome has found that five genetic loci contribute a large fraction of disease risk in type 2 diabetes.
APOE and Alzheimer disease: a major gene with semi-dominant inheritance
Apolipoprotein E ( APOE ) dependent lifetime risks (LTRs) for Alzheimer Disease (AD) are currently not accurately known and odds ratios alone are insufficient to assess these risks. We calculated AD LTR in 7351 cases and 10 132 controls from Caucasian ancestry using Rochester (USA) incidence data. At the age of 85 the LTR of AD without reference to APOE genotype was 11% in males and 14% in females. At the same age, this risk ranged from 51% for APOE44 male carriers to 60% for APOE44 female carriers, and from 23% for APOE34 male carriers to 30% for APOE34 female carriers, consistent with semi-dominant inheritance of a moderately penetrant gene. Using PAQUID (France) incidence data, estimates were globally similar except that at age 85 the LTRs reached 68 and 35% for APOE 44 and APOE 34 female carriers, respectively. These risks are more similar to those of major genes in Mendelian diseases, such as BRCA1 in breast cancer, than those of low-risk common alleles identified by recent GWAS in complex diseases. In addition, stratification of our data by age groups clearly demonstrates that APOE4 is a risk factor not only for late-onset but for early-onset AD as well. Together, these results urge a reappraisal of the impact of APOE in Alzheimer disease.
FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity
Naturally occurring variation in gene copy number is increasingly recognized as a heritable source of susceptibility to genetically complex diseases. Here we report strong association between FCGR3B copy number and risk of systemic lupus erythematosus ( P = 2.7 × 10 −8 ), microscopic polyangiitis ( P = 2.9 × 10 −4 ) and Wegener's granulomatosis in two independent cohorts from the UK ( P = 3 × 10 −3 ) and France ( P = 1.1 × 10 −4 ). We did not observe this association in the organ-specific Graves' disease or Addison's disease. Our findings suggest that low FCGR3B copy number, and in particular complete FCGR3B deficiency, has a key role in the development of systemic autoimmunity.
Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies
Dense deposit disease and glomerulonephritis with isolated C3 deposits are glomerulopathies characterized by deposits of C3 within or along the glomerular basement membrane. Previous studies found a link between dysregulation of the complement alternative pathway and the pathogenesis of these diseases. We analyzed the role of acquired and genetic complement abnormalities in a cohort of 134 patients, of whom 29 have dense deposit disease, 56 have glomerulonephritis with isolated C3 deposits, and 49 have primary membranoproliferative glomerulonephritis type I, with adult and pediatric onset. A total of 53 patients presented with a low C3 level, and 65 were positive for C3 nephritic factor that was significantly more frequently detected in patients with dense deposit disease than in other histological types. Mutations in CFH and CFI genes were identified in 24 patients associated with a C3 nephritic factor in half the cases. We found evidence for complement alternative pathway dysregulation in 26 patients with membranoproliferative glomerulonephritis type I. The complement factor H Y402H variant was significantly increased in dense deposit disease. We identified one at-risk membrane cofactor protein (MCP) haplotype for glomerulonephritis with isolated C3 deposits and membranoproliferative glomerulonephritis type I. Thus, our results suggest a critical role of fluid-phase alternative pathway dysregulation in the pathogenesis of C3 glomerulopathies as well as in immune complex–mediated glomerular diseases. The localization of the C3 deposits may be under the influence of MCP expression.
Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial
Molecularly targeted agents have been reported to have anti-tumour activity for patients whose tumours harbour the matching molecular alteration. These results have led to increased off-label use of molecularly targeted agents on the basis of identified molecular alterations. We assessed the efficacy of several molecularly targeted agents marketed in France, which were chosen on the basis of tumour molecular profiling but used outside their indications, in patients with advanced cancer for whom standard-of-care therapy had failed. The open-label, randomised, controlled phase 2 SHIVA trial was done at eight French academic centres. We included adult patients with any kind of metastatic solid tumour refractory to standard of care, provided they had an Eastern Cooperative Oncology Group performance status of 0 or 1, disease that was accessible for a biopsy or resection of a metastatic site, and at least one measurable lesion. The molecular profile of each patient's tumour was established with a mandatory biopsy of a metastatic tumour and large-scale genomic testing. We only included patients for whom a molecular alteration was identified within one of three molecular pathways (hormone receptor, PI3K/AKT/mTOR, RAF/MEK), which could be matched to one of ten regimens including 11 available molecularly targeted agents (erlotinib, lapatinib plus trastuzumab, sorafenib, imatinib, dasatinib, vemurafenib, everolimus, abiraterone, letrozole, tamoxifen). We randomly assigned these patients (1:1) to receive a matched molecularly targeted agent (experimental group) or treatment at physician's choice (control group) by central block randomisation (blocks of size six). Randomisation was done centrally with a web-based response system and was stratified according to the Royal Marsden Hospital prognostic score (0 or 1 vs 2 or 3) and the altered molecular pathway. Clinicians and patients were not masked to treatment allocation. Treatments in both groups were given in accordance with the approved product information and standard practice protocols at each institution and were continued until evidence of disease progression. The primary endpoint was progression-free survival in the intention-to-treat population, which was not assessed by independent central review. We assessed safety in any patients who received at least one dose of their assigned treatment. This trial is registered with ClinicalTrials.gov, number NCT01771458. Between Oct 4, 2012, and July 11, 2014, we screened 741 patients with any tumour type. 293 (40%) patients had at least one molecular alteration matching one of the 10 available regimens. At the time of data cutoff, Jan 20, 2015, 195 (26%) patients had been randomly assigned, with 99 in the experimental group and 96 in the control group. All patients in the experimental group started treatment, as did 92 in the control group. Two patients in the control group received a molecularly targeted agent: both were included in their assigned group for efficacy analyses, the patient who received an agent that was allowed in the experimental group was included in the experimental group for the purposes of safety analyses, while the other patient, who received a molecularly targeted agent and chemotherapy, was kept in the control group for safety analyses. Median follow-up was 11·3 months (IQR 5·8–11·6) in the experimental group and 11·3 months (8·1–11·6) in the control group at the time of the primary analysis of progression-free survival. Median progression-free survival was 2·3 months (95% CI 1·7–3·8) in the experimental group versus 2·0 months (1·8–2·1) in the control group (hazard ratio 0·88, 95% CI 0·65–1·19, p=0·41). In the safety population, 43 (43%) of 100 patients treated with a molecularly targeted agent and 32 (35%) of 91 patients treated with cytotoxic chemotherapy had grade 3–4 adverse events (p=0·30). The use of molecularly targeted agents outside their indications does not improve progression-free survival compared with treatment at physician's choice in heavily pretreated patients with cancer. Off-label use of molecularly targeted agents should be discouraged, but enrolment in clinical trials should be encouraged to assess predictive biomarkers of efficacy. Institut Curie.
Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value
Colon cancer (CC) pathological staging fails to accurately predict recurrence, and to date, no gene expression signature has proven reliable for prognosis stratification in clinical practice, perhaps because CC is a heterogeneous disease. The aim of this study was to establish a comprehensive molecular classification of CC based on mRNA expression profile analyses. Fresh-frozen primary tumor samples from a large multicenter cohort of 750 patients with stage I to IV CC who underwent surgery between 1987 and 2007 in seven centers were characterized for common DNA alterations, including BRAF, KRAS, and TP53 mutations, CpG island methylator phenotype, mismatch repair status, and chromosomal instability status, and were screened with whole genome and transcriptome arrays. 566 samples fulfilled RNA quality requirements. Unsupervised consensus hierarchical clustering applied to gene expression data from a discovery subset of 443 CC samples identified six molecular subtypes. These subtypes were associated with distinct clinicopathological characteristics, molecular alterations, specific enrichments of supervised gene expression signatures (stem cell phenotype-like, normal-like, serrated CC phenotype-like), and deregulated signaling pathways. Based on their main biological characteristics, we distinguished a deficient mismatch repair subtype, a KRAS mutant subtype, a cancer stem cell subtype, and three chromosomal instability subtypes, including one associated with down-regulated immune pathways, one with up-regulation of the Wnt pathway, and one displaying a normal-like gene expression profile. The classification was validated in the remaining 123 samples plus an independent set of 1,058 CC samples, including eight public datasets. Furthermore, prognosis was analyzed in the subset of stage II-III CC samples. The subtypes C4 and C6, but not the subtypes C1, C2, C3, and C5, were independently associated with shorter relapse-free survival, even after adjusting for age, sex, stage, and the emerging prognostic classifier Oncotype DX Colon Cancer Assay recurrence score (hazard ratio 1.5, 95% CI 1.1-2.1, p = 0.0097). However, a limitation of this study is that information on tumor grade and number of nodes examined was not available. We describe the first, to our knowledge, robust transcriptome-based classification of CC that improves the current disease stratification based on clinicopathological variables and common DNA markers. The biological relevance of these subtypes is illustrated by significant differences in prognosis. This analysis provides possibilities for improving prognostic models and therapeutic strategies. In conclusion, we report a new classification of CC into six molecular subtypes that arise through distinct biological pathways.