Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
91 result(s) for "Ichthyosiform Erythroderma, Congenital - genetics"
Sort by:
Using chanarin-dorfman syndrome patient fibroblasts to explore disease mechanisms and new treatment avenues
Background Chanarin-Dorfman syndrome (CDS) is a multisystemic autosomal recessive rare disorder. CDS is caused by variants in the abhydrolase domain containing 5 (ABHD5) encoding gene ( CGI-58 ), which ultimately leads to excessive lipid storage, and therefore a high abundance of cellular lipid droplets (LDs). Although the molecular etiology of the disease was described many years ago, no treatment for CDS is currently available. Results To further characterize the molecular basis of the disease and to uncover new treatment avenues, we used skin fibroblasts originating from a young patient diagnosed with CDS due to a homozygous nonsense mutation. We show that dysfunctional ABHD5 does not only affect LDs, but also influences other metabolic-related organelles; the mitochondria and peroxisomes. Additionally, we found that expressing functional ABHD5 in CDS patient cells reduced LD number. Finally, we developed and applied a high content-based drug repurposing screen based on a collection of ∼2500 FDA approved compounds, yielding several compounds that affected LD total area and size. Conclusions Our findings enhance the understanding of the dysfunction underlying CDS and propose new avenues for the treatment of CDS patients.
A novel mutation in the transglutaminase-1 gene identified in a collodion baby: A case report
Autosomal recessive congenital ichthyosis is a group of skin disorders characterized by abnormal keratinization. The collodion baby phenotype is a rare phenotype of autosomal recessive congenital ichthyosis characterized by a tight, translucent membrane that encases the newborn, which leads to significant medical challenges. This case report describes a male infant born at 35 weeks and 6 days of gestation who presented with the collodion baby syndrome. The present case exhibited a nonbullous congenital ichthyosiform erythroderma–like phenotype, characterized by diffuse erythema and fine scaling. Genetic analysis revealed two compound heterozygous mutations in TGM1: c.425G>T (p.Arg142Leu) in exon 3, previously reported as a pathogenic hotspot in nonbullous congenital ichthyosiform erythroderma, and a novel mutation, c.1198A>C (p.Asn400His) in exon 8, which has not only been associated with lamellar ichthyosis but has also been detected in nonbullous congenital ichthyosiform erythroderma. A comprehensive treatment strategy focused on symptom alleviation and supportive care led to significant improvement, and the infant was discharged after 6 days of hospitalization. This case highlights the importance of early diagnosis, multidisciplinary care, and genetic testing in managing autosomal recessive congenital ichthyosis. The identification of novel TGM1 mutations contributes to the expanding mutation spectrum and may inform future diagnostic and therapeutic approaches.
Autosomal Recessive Congenital Ichthyosis
Recent progress in the genetics of autosomal recessive congenital ichthyosis (ARCI) has illustrated the power of genetic strategies for the investigation of newly recognized metabolic pathways and for the mechanisms of barrier function in normal skin. Parallel biochemical studies have elucidated important functional aspects of these findings (Brash et al., 2007), and it is now time to determine how the genetic and biochemical features correlate with the clinical phenotypes of patients. The story of ARCI provides an instructive example of synergy among geneticists, biochemists, and clinicians.
Mitotic Recombination in Patients with Ichthyosis Causes Reversion of Dominant Mutations in KRT10
Somatic loss of wild-type alleles can produce disease traits such as neoplasia. Conversely, somatic loss of disease-causing mutations can revert phenotypes; however, these events are infrequently observed. Here we show that ichthyosis with confetti, a severe, sporadic skin disease in humans, is associated with thousands of revertant clones of normal skin that arise from loss of heterozygosity on chromosome 17q via mitotic recombination. This allowed us to map and identify disease-causing mutations in the gene encoding keratin 10 (KRT10); all result in frameshifts into the same alternative reading frame, producing an arginine-rich C-terminal peptide that redirects keratin 10 from the cytokeratin filament network to the nucleolus. The high frequency of somatic reversion in ichthyosis with confetti suggests that revertant stem cell clones are under strong positive selection and/or that the rate of mitotic recombination is elevated in individuals with this disorder.
Mutational Spectrum of the ABCA12 Gene and Genotype–Phenotype Correlation in a Cohort of 64 Patients with Autosomal Recessive Congenital Ichthyosis
Autosomal recessive congenital ichthyosis (ARCI) is a non-syndromic congenital disorder of cornification characterized by abnormal scaling of the skin. The three major phenotypes are lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. ARCI is caused by biallelic mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, SDR9C7, SULT2B1, and TGM1. The most severe form of ARCI, harlequin ichthyosis, is caused by mutations in ABCA12. Mutations in this gene can also lead to congenital ichthyosiform erythroderma or lamellar ichthyosis. We present a large cohort of 64 patients affected with ARCI carrying biallelic mutations in ABCA12. Our study comprises 34 novel mutations in ABCA12, expanding the mutational spectrum of ABCA12-associated ARCI up to 217 mutations. Within these we found the possible mutational hotspots c.4541G>A, p.(Arg1514His) and c.4139A>G, p.(Asn1380Ser). A correlation of the phenotype with the effect of the genetic mutation on protein function is demonstrated. Loss-of-function mutations on both alleles generally result in harlequin ichthyosis, whereas biallelic missense mutations mainly lead to CIE or LI.
Mutations in CERS3 Cause Autosomal Recessive Congenital Ichthyosis in Humans
Autosomal recessive congenital ichthyosis (ARCI) is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3) and abolishes a sequence for a long non-coding RNA (FLJ42289). Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3) and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis.
Neutral Lipid Storage Diseases: clinical/genetic features and natural history in a large cohort of Italian patients
Background A small number of patients affected by Neutral Lipid Storage Diseases (NLSDs: NLSD type M with Myopathy and NLSD type I with Ichthyosis) have been described in various ethnic groups worldwide. However, relatively little is known about the progression and phenotypic variability of the disease in large specific populations. The aim of our study was to assess the natural history, disability and genotype-phenotype correlations in Italian patients with NLSDs. Twenty-one patients who satisfied the criteria for NLSDs were enrolled in a retrospective cross-sectional study to evaluate the genetic aspects, clinical signs at onset, disability progression and comorbidities associated with this group of diseases. Results During the clinical follow-up (range: 2–44 years, median: 17.8 years), two patients (9.5%, both with NLSD-I) died of hepatic failure, and a further five (24%) lost their ability to walk or needed help when walking after a mean period of 30.6 years of disease. None of the patients required mechanical ventilation. No patient required a heart transplant, one patient with NLSD-M was implanted with a cardioverter defibrillator for severe arrhythmias. Conclusion The genotype/phenotype correlation analysis in our population showed that the same gene mutations were associated with a varying clinical onset and course. This study highlights peculiar aspects of Italian NLSD patients that differ from those observed in Japanese patients, who were found to be affected by a marked hypertrophic cardiopathy. Owing to the varying phenotypic expression of the same mutations, it is conceivable that some additional genetic or epigenetic factors affect the symptoms and progression in this group of diseases.
Arginine‐ but not alanine‐rich carboxy‐termini trigger nuclear translocation of mutant keratin 10 in ichthyosis with confetti
Ichthyosis with confetti (IWC) is a genodermatosis associated with dominant‐negative variants in keratin 10 (KRT10) or keratin 1 (KRT1). These frameshift variants result in extended aberrant proteins, localized to the nucleus rather than the cytoplasm. This mislocalization is thought to occur as a result of the altered carboxy (C)‐terminus, from poly‐glycine to either a poly‐arginine or ‐alanine tail. Previous studies on the type of C‐terminus and subcellular localization of the respective mutant protein are divergent. In order to fully elucidate the pathomechanism of IWC, a greater understanding is critical. This study aimed to establish the consequences for localization and intermediate filament formation of altered keratin 10 (K10) C‐termini. To achieve this, plasmids expressing distinct KRT10 variants were generated. Sequences encoded all possible reading frames of the K10 C‐terminus as well as a nonsense variant. A keratinocyte line was transfected with these plasmids. Additionally, gene editing was utilized to introduce frameshift variants in exon 6 and exon 7 at the endogenous KRT10 locus. Cellular localization of aberrant K10 was observed via immunofluorescence using various antibodies. In each setting, immunofluorescence analysis demonstrated aberrant nuclear localization of K10 featuring an arginine‐rich C‐terminus. However, this was not observed with K10 featuring an alanine‐rich C‐terminus. Instead, the protein displayed cytoplasmic localization, consistent with wild‐type and truncated forms of K10. This study demonstrates that, of the various 3′ frameshift variants of KRT10, exclusively arginine‐rich C‐termini lead to nuclear localization of K10.
The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene
Neutral lipid storage disease is caused by mutations in the CGI-58 or the PNPLA2 genes. Lipid storage can be detected in various cell types including blood granulocytes. While CGI-58 mutations are associated with Chanarin–Dorfman syndrome, a condition characterized by lipid storage and skin involvement (ichthyosis), mutations in the patatin-like phospholipase domain-containing protein 2 gene ( PNPLA2 ) were reported with skeletal and cardiac muscle disease only. We describe clinical, myopathological, magnetic resonance imaging (MRI), and genetic findings of six patients carrying different recessive PNPLA2 mutations. Pulse-chase labeling of control and patient cells with supplementation of clenbuterol, salmeterol, and dexamethasone was performed in vitro. The patients share a recognizable phenotype with prominent shoulder girdle weakness and mild pelvic girdle and distal muscle weakness, with highly elevated creatine kinase (CK) and cardiomyopathy developing at later stages. Muscle histology invariably reveals massive accumulation of lipid droplets. New muscle or whole-body MRI techniques may assist diagnosis and may become a useful tool to quantify intramuscular lipid storage. Four novel and two previously reported mutations were detected, affecting different parts of the PNPLA2 gene. Activation of hormone-sensitive lipase by beta-adrenergic substances such as clenbuterol appears to bypass the enzymatic block in PNPLA2-deficient patient cells in vitro. PNPLA2 deficiency is a slowly progressive myopathy with onset around the third decade. Cardiac involvement is relatively common at a later stage. Muscle MRI may detect increased lipid in a characteristic distribution, which could be used for monitoring disease progression. Beta-adrenergic agents may be beneficial in improving triacylglycerol breakdown in patients with PNPLA2 mutations.
Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients
The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations.