Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
513 result(s) for "Idiopathic Pulmonary Fibrosis - physiopathology"
Sort by:
Nintedanib in Progressive Fibrosing Interstitial Lung Diseases
In patients with a progressive interstitial lung disease, 62% of whom had a CT pattern of usual interstitial pneumonia, those who received nintedanib had a lower annual rate of decline in the forced vital capacity than those who received placebo at 52 weeks.
Fibrotic and vascular abnormalities quantified by an AI-based model are associated with outcomes in patients with idiopathic pulmonary fibrosis
Background Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease associated with high morbidity and mortality despite specific anti-fibrotic therapies. Management of IPF is complex and relies on pulmonary function tests (PFT) to evaluate severity and monitor progression. CT provides non-invasive morphologic assessment and emerging software techniques enable quantitative analysis. Methods We included 319 individuals with IPF from the OSIC dataset. A cross-sectional analysis was made for all patients, with a longitudinal evaluation for 143 of them. We used LungQ software (Thirona, The Netherlands) to quantify lung and pulmonary vessel volumes, as well as the extent of interstitial lung disease and to assess correlation with PFT and mortality. Results Quantitative extent of fibrotic abnormalities was correlated with baseline FVC and DLCO (r -0.47, p  < 0.0001 and r -0.55, p  < 0.0001 respectively) and longitudinal modifications over time (r -0.48, p  < 0.0001 and r-0.43 p  < 0.0001, respectively). Median baseline extent of ILD, expressed as a percentage of lung volume, was 16.5% (10.8–25.5) and increased to 17.3% (11.6–29) on follow-up ( p  < 0.001). The median ILD progression was of 9.8% (-9.5-40.0). Vascular enlargement quantification as well as ILD quantification were predictive marker of death ( p  < 0.0001). However, vascular abnormalities’ independent predictive value could not be assessed in multivariate models due to multicollinearity with other variables. Conclusions LungQ allows to quantify interstitial and vascular lung features and their changes over time in a large cohort of patients with IPF. Imaging markers were negatively correlated with PFT at baseline and follow-ups were predictive of mortality confirming their potential as disease quantifiers. Further clinical validation is needed to specify the potential clinical use.
Predicting Outcomes in Idiopathic Pulmonary Fibrosis Using Automated Computed Tomographic Analysis
Quantitative computed tomographic (CT) measures of baseline disease severity might identify patients with idiopathic pulmonary fibrosis (IPF) with an increased mortality risk. We evaluated whether quantitative CT variables could act as a cohort enrichment tool in future IPF drug trials. To determine whether computer-derived CT measures, specifically measures of pulmonary vessel-related structures (VRSs), can better predict functional decline and survival in IPF and reduce requisite sample sizes in drug trial populations. Patients with IPF undergoing volumetric noncontrast CT imaging at the Royal Brompton Hospital, London, and St. Antonius Hospital, Utrecht, were examined to identify pulmonary function measures (including FVC) and visual and computer-derived (CALIPER [Computer-Aided Lung Informatics for Pathology Evaluation and Rating] software) CT features predictive of mortality and FVC decline. The discovery cohort comprised 247 consecutive patients, with validation of results conducted in a separate cohort of 284 patients, all fulfilling drug trial entry criteria. In the discovery and validation cohorts, CALIPER-derived features, particularly VRS scores, were among the strongest predictors of survival and FVC decline. CALIPER results were accentuated in patients with less extensive disease, outperforming pulmonary function measures. When used as a cohort enrichment tool, a CALIPER VRS score greater than 4.4% of the lung was able to reduce the requisite sample size of an IPF drug trial by 26%. Our study has validated a new quantitative CT measure in patients with IPF fulfilling drug trial entry criteria-the VRS score-that outperformed current gold standard measures of outcome. When used for cohort enrichment in an IPF drug trial setting, VRS threshold scores can reduce a required IPF drug trial population size by 25%, thereby limiting prohibitive trial costs. Importantly, VRS scores identify patients in whom antifibrotic medication prolongs life and reduces FVC decline.
The European IPF registry (eurIPFreg): baseline characteristics and survival of patients with idiopathic pulmonary fibrosis
Background Since 2009, IPF patients across Europe are recruited into the eurIPFreg, providing epidemiological data and biomaterials for translational research. Methods The registry data are based on patient and physician baseline and follow-up questionnaires, comprising 1700 parameters. The mid- to long-term objectives of the registry are to provide clues for a better understanding of IPF phenotype sub-clusters, triggering factors and aggravating conditions, regional and environmental characteristics, and of disease behavior and management. Results This paper describes baseline data of 525 IPF subjects recruited from 11/2009 until 10/2016. IPF patients had a mean age of 68.1 years, and seeked medical advice due to insidious dyspnea (90.1%), fatigue (69.2%), and dry coughing (53.2%). A surgical lung biopsy was performed in 32% in 2009, but in only 8% of the cases in 2016, possibly due to increased numbers of cryobiopsy. At the time of inclusion in the eurIPFreg, FVC was 68.4% ± 22.6% of predicted value, DLco ranged at 42.1% ± 17.8% of predicted value (mean value ± SD). Signs of pulmonary hypertension were found in 16.8%. Steroids, immunosuppressants and N-Acetylcysteine declined since 2009, and were replaced by antifibrotics, under which patients showed improved survival ( p  = 0.001). Conclusions Our data provide important insights into baseline characteristics, diagnostic and management changes as well as outcome data in European IPF patients over time. Trial registration The eurIPFreg and eurIPFbank are listed in ClinicalTrials.gov( NCT02951416 ).
Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis
In this randomized, placebo-controlled trial, treatment with nintedanib, an intracellular inhibitor of multiple tyrosine kinases, led to a reduced rate of loss of forced vital capacity in patients with idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis is a fatal lung disease characterized by worsening dyspnea and progressive loss of lung function. 1 A decline in forced vital capacity (FVC) is consistent with disease progression and is predictive of reduced survival time. 1 – 6 Idiopathic pulmonary fibrosis is believed to arise from an aberrant proliferation of fibrous tissue and tissue remodeling due to the abnormal function and signaling of alveolar epithelial cells and interstitial fibroblasts. 7 The activation of cell-signaling pathways through tyrosine kinases such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) has been implicated in the pathogenesis of . . .
Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases
Cellular senescence is now considered an important driving mechanism for chronic lung diseases, particularly chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Cellular senescence is due to replicative and stress-related senescence with activation of p53 and p16 , respectively, leading to activation of p21 and cell cycle arrest. Senescent cells secrete multiple inflammatory proteins known as the senescence-associated secretory phenotype, leading to low-grade chronic inflammation, which further drives senescence. Loss of key antiaging molecules sirtuin-1 and sirtuin-6 may be important in acceleration of aging and arises from oxidative stress reducing phosphatase PTEN (phosphatase tensin homolog), thereby activating PI3K (phosphoinositide-3-kinase) and mTOR (mammalian target of rapamycin). MicroRNA-34a (miR-34a), which is regulated by PI3K-mTOR signaling, plays a pivotal role in reducing sirtuin-1/6, and its inhibition with an antagomir results in their restoration, reducing markers of senescence, reducing senescence-associated secretory phenotype, and reversing cell cycle arrest in epithelial cells from peripheral airways of patients with COPD. miR-570 is also involved in reduction of sirtuin-1 and cellular senescence and is activated by p38 mitogen-activated protein kinase. These miRNAs may be released from cells in extracellular vesicles that are taken up by other cells, thereby spreading senescence locally within the lung but also outside the lung through the circulation; this may account for comorbidities of COPD and other lung diseases. Understanding the mechanisms of cellular senescence may result in new treatments for chronic lung disease, either by inhibiting PI3K-mTOR signaling, by inhibiting specific miRNAs, or by deletion of senescent cells with senolytic therapies, already shown to be effective in experimental lung fibrosis.
Contributions of alveolar epithelial cell quality control to pulmonary fibrosis
Epithelial cell dysfunction has emerged as a central component of the pathophysiology of diffuse parenchymal diseases including idiopathic pulmonary fibrosis (IPF). Alveolar type 2 (AT2) cells represent a metabolically active lung cell population important for surfactant biosynthesis and alveolar homeostasis. AT2 cells and other distal lung epithelia, like all eukaryotic cells, contain an elegant quality control network to respond to intrinsic metabolic and biosynthetic challenges imparted by mutant protein conformers, dysfunctional subcellular organelles, and dysregulated telomeres. Failed AT2 quality control components (the ubiquitin-proteasome system, unfolded protein response, macroautophagy, mitophagy, and telomere maintenance) result in diverse cellular endophenotypes and molecular signatures including ER stress, defective autophagy, mitochondrial dysfunction, apoptosis, inflammatory cell recruitment, profibrotic signaling, and altered progenitor function that ultimately converge to drive downstream fibrotic remodeling in the IPF lung. As this complex network becomes increasingly better understood, opportunities will emerge to identify targets and therapeutic strategies for IPF.
The Role of Bacteria in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown cause that leads to respiratory failure and death within 5 years of diagnosis. Overt respiratory infection and immunosuppression carry a high morbidity and mortality, and polymorphisms in genes related to epithelial integrity and host defense predispose to IPF. To investigate the role of bacteria in the pathogenesis and progression of IPF. We prospectively enrolled patients diagnosed with IPF according to international criteria together with healthy smokers, nonsmokers, and subjects with moderate chronic obstructive pulmonary disease as control subjects. Subjects underwent bronchoalveolar lavage (BAL), from which genomic DNA was isolated. The V3-V5 region of the bacterial 16S rRNA gene was amplified, allowing quantification of bacterial load and identification of communities by 16S rRNA quantitative polymerase chain reaction and pyrosequencing. Sixty-five patients with IPF had double the burden of bacteria in BAL fluid compared with 44 control subjects. Baseline bacterial burden predicted the rate of decline in lung volume and risk of death and associated independently with the rs35705950 polymorphism of the MUC5B mucin gene, a proven host susceptibility factor for IPF. Sequencing yielded 912,883 high-quality reads from all subjects. We identified Haemophilus, Streptococcus, Neisseria, and Veillonella spp. to be more abundant in cases than control subjects. Regression analyses indicated that these specific operational taxonomic units as well as bacterial burden associated independently with IPF. IPF is characterized by an increased bacterial burden in BAL that predicts decline in lung function and death. Trials of antimicrobial therapy are needed to determine if microbial burden is pathogenic in the disease.
Imaging Patterns Are Associated with Interstitial Lung Abnormality Progression and Mortality
Interstitial lung abnormalities (ILA) are radiologic abnormalities on chest computed tomography scans that have been associated with an early or mild form of pulmonary fibrosis. Although ILA have been associated with radiologic progression, it is not known if specific imaging patterns are associated with progression or risk of mortality. To determine the role of imaging patterns on the risk of death and ILA progression. ILA (and imaging pattern) were assessed in 5,320 participants from the AGES-Reykjavik Study, and ILA progression was assessed in 3,167 participants. Multivariable logistic regression was used to assess factors associated with ILA progression, and Cox proportional hazards models were used to assess time to mortality. Over 5 years, 327 (10%) had ILA on at least one computed tomography, and 1,435 (45%) did not have ILA on either computed tomography. Of those with ILA, 238 (73%) had imaging progression, whereas 89 (27%) had stable to improved imaging; increasing age and copies of genotype were associated with imaging progression. The definite fibrosis pattern was associated with the highest risk of progression (odds ratio, 8.4; 95% confidence interval, 2.7-25;  = 0.0003). Specific imaging patterns were also associated with an increased risk of death. After adjustment, both a probable usual interstitial pneumonia and usual interstitial pneumonia pattern were associated with an increased risk of death when compared with those indeterminate for usual interstitial pneumonia (hazard ratio, 1.7; 95% confidence interval, 1.2-2.4; = 0.001; hazard ratio, 3.9; 95% confidence interval, 2.3-6.8;  < 0.0001), respectively. In those with ILA, imaging patterns can be used to help predict who is at the greatest risk of progression and early death.
The evidence of benefits of exercise training in interstitial lung disease: a randomised controlled trial
BackgroundUncertainty exists regarding the clinical relevance of exercise training across the range of interstitial lung diseases (ILDs).ObjectiveTo establish the impact of exercise training in patients with ILDs of differing aetiology and severity.Methods142 participants with ILD (61 idiopathic pulmonary fibrosis (IPF), 22 asbestosis, 23 connective tissue disease-related ILD (CTD-ILD) and 36 with other aetiologies) were randomised to either 8 weeks of supervised exercise training or usual care. Six-minute walk distance (6MWD), Chronic Respiratory Disease Questionnaire (CRDQ), St George Respiratory Questionnaire IPF-specific version (SGRQ-I) and modified Medical Research Council dyspnoea score were measured at baseline, 9 weeks and 6 months.Measurements and main resultsExercise training significantly increased 6MWD (25 m, 95% CI 2 to 47 m) and health-related quality of life (CRDQ and SGRQ-I) in people with ILD. Larger improvements in 6MWD, CRDQ, SGRQ-I and dyspnoea occurred in asbestosis and IPF compared with CTD-ILD, but with few significant differences between subgroups. Benefits declined at 6 months except in CTD-ILD. Lower baseline 6MWD and worse baseline symptoms were associated with greater benefit in 6MWD and symptoms following training. Greater gains were seen in those whose exercise prescription was successfully progressed according to the protocol. At 6 months, sustained improvements in 6MWD and symptoms were associated with better baseline lung function and less pulmonary hypertension.ConclusionsExercise training is effective in patients across the range of ILDs, with clinically meaningful benefits in asbestosis and IPF. Successful exercise progression maximises improvements and sustained treatment effects favour those with milder disease.Trial registration numberResults, ACTRN12611000416998.