Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,077 result(s) for "Leukemia inhibitory factor"
Sort by:
Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology 1 , 2 . The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance 3 – 7 . Furthermore, PSC activation occurs very early during PDAC tumorigenesis 8 – 10 , and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial–mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell–cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy. A systematic proteomic investigation of disease mediators secreted by pancreatic stellate cells identifies leukaemia inhibitory factor (LIF) as a key factor that acts on cancer cells, promoting tumour progression and chemoresistance.
Leukemia Inhibitory Factor Enhances Endometrial Stromal Cell Decidualization in Humans and Mice
Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10(-8) M) plus medroxyprogesterone acetate (MPA, 10(-7) M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P<0.05). LIF mRNA in HESC was down-regulated by decidualization treatment (E+MPA) whereas LIF receptor (R) mRNA was up-regulated, suggesting that the decidualization stimulus 'primed' HESC for LIF action, but that factors not present in our in vitro model were required to induce LIF expression. Ex vivo first trimester decidual biopsies secreted >100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation and placentation.
Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success
Uterine glands are essential for pregnancy establishment. By employing forkhead box A2 (FOXA2)-deficient mouse models coupled with leukemia inhibitory factor (LIF) repletion, we reveal definitive roles of uterine glands in embryo implantation and stromal cell decidualization. Here we report that LIF from the uterine glands initiates embryo-uterine communication, leading to embryo attachment and stromal cell decidualization. Detailed histological and molecular analyses discovered that implantation crypt formation does not involve uterine glands, but removal of the luminal epithelium is delayed and subsequent decidualization fails in LIF-replaced glandless but not gland-containing FOXA2-deficient mice. Adverse ripple effects of those dysregulated events in the glandless uterus result in embryo resorption and pregnancy failure. These studies provide evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. The transcription factor FOXA2 is specifically expressed in uterine glands. Here, using two conditional FOXA2 knockout mouse models, the authors show that glandular epithelia of the endometrium are required for timely embryo implantation and subsequent endometrial decidualization during successful pregnancy establishment.
Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer
KRAS mutations are present in over 90% of pancreatic ductal adenocarcinomas (PDAC), and drive their poor outcomes and failure to respond to targeted therapies. Here we show that Leukemia Inhibitory Factor (LIF) expression is induced specifically by oncogenic KRAS in PDAC and that LIF depletion by genetic means or by neutralizing antibodies prevents engraftment in pancreatic xenograft models. Moreover, LIF-neutralizing antibodies synergize with gemcitabine to eradicate established pancreatic tumors in a syngeneic, Kras G12D -driven, PDAC mouse model. The related cytokine IL-6 cannot substitute for LIF, suggesting that LIF mediates KRAS-driven malignancies through a non-STAT-signaling pathway. Unlike IL-6, LIF inhibits the activity of the Hippo-signaling pathway in PDACs. Depletion of YAP inhibits the function of LIF in human PDAC cells. Our data suggest a crucial role of LIF in KRAS-driven pancreatic cancer and that blockade of LIF by neutralizing antibodies represents an attractive approach to improving therapeutic outcomes. KRAS mutations are frequent in pancreatic ductal adenocarcinoma, leading to bad prognosis and resistance to targeted therapies. Here, the authors show that LIF expression is specifically induced by KRAS and constitutes a potential target to treat these KRAS-mutated cancers.
LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy
Cancer response to immunotherapy depends on the infiltration of CD8 + T cells and the presence of tumor-associated macrophages within tumors. Still, little is known about the determinants of these factors. We show that LIF assumes a crucial role in the regulation of CD8 + T cell tumor infiltration, while promoting the presence of protumoral tumor-associated macrophages. We observe that the blockade of LIF in tumors expressing high levels of LIF decreases CD206, CD163 and CCL2 and induces CXCL9 expression in tumor-associated macrophages. The blockade of LIF releases the epigenetic silencing of CXCL9 triggering CD8 + T cell tumor infiltration. The combination of LIF neutralizing antibodies with the inhibition of the PD1 immune checkpoint promotes tumor regression, immunological memory and an increase in overall survival. LIF is a pleiotropic cytokine that promotes an immunosuppressive microenvironment and has critical functions in embryonic development. Here, the authors show that LIF regulates CD8 +  T cell tumor infiltration in cancer by repressing CXCL19 and promoting the presence of protumoral macrophages and thatLIF inhibition, via neutralizing antibodies, promotes T cell infiltration and synergizes with immune checkpoint inhbitors resulting in tumor regression and immunological memory.
RO8191, a new compound for initiating embryo implantation in mice
During early pregnancy in mice, leukemia inhibitory factor (LIF) regulates embryo implantation by activating the JAK/STAT3 signaling pathway. The STAT3 pathway has been recognized to play a critical role in embryo implantation; however, it remains unclear whether STAT3 activation alone is sufficient to induce implantation. In this study, we investigated the effects of RO8191, a potential STAT3 activator, on embryo implantation through a series of studies with different mouse models. We found that RO8191 can induce embryo implantation and decidual reaction by activating STAT3, but not STAT1, signaling in both epithelial and stromal compartments in delayed implantation models. Furthermore, RO8191 was able to rescue implantation and establish pregnancy even in uterine epithelial-specific Lifr conditional knockout (cKO) mice, which exhibit infertility due to implantation failure. In contrast, in uterine epithelial-specific Stat3 or Gp130 conditional knockout (cKO) mice, which also show embryo implantation failure, RO8191 induces only a partial decidual response. These results suggest that STAT3, Gp130 and LIFR each play distinct roles in embryo implantation and development. Although the detailed mechanisms underlying RO8191’s action remain to be elucidated, our findings provide insights supporting its potential application in treating recurrent implantation failure.
Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice
Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia. Cancer cachexia is a systemic syndrome characterized by dramatic weight loss and decline in adipose tissue and skeletal muscle mass. Here, the authors show that overexpression of leukemia inhibitory factor (LIF), a secreted cytokine, suppresses de novo lipogenesis and induces cachexia in mice.
Immunohistochemical expression pattern of leukemia inhibitory factor and its receptor may mark a tipping point in the progression of oral cancer
Oral squamous cell carcinoma (OSCC) is an aggressive cancer with 60% survival rate, high mortality, and morbidity. Leukaemia inhibitory factor (LIF) and its receptor (LIF-R) are involved in the activation of the signal transducer and activator of transcription-3 (STAT3) pathway which has central involvement in the signalling pathways involved in important pathological processes including carcinogenesis and inflammation. STAT3 and its activators have shown prognostic significance in OSCC. The aim is to evaluate the immunohistochemical (IHC) expression of LIF and LIF-R proteins in OSCC. Four tissue microarrays (TMA) including OSCC ( n  = 95) and normal oral mucosa (NOM; n  = 11) as control tissue were used in this study. FIJI software was for semi-quantitative analysis of IHC expression of LIF and LIF-R. Statistical analysis were performed using SPSS. LIF-R was expressed to a significantly higher extent in OSCC compared to NOM ( p  = 0.02) and LIF was expressed to a significantly higher extent in NOM compared to OSCC ( p  < 0.001) and in the buccal mucosa compared to the gingiva/alveolar mucosa ( p  = 0.022) and the lip vermilion ( p  = 0.17). No other significant differences were found in LIF and LIF-R expression when OSCC were compared according to site, grade, or stage. This is the first study to confirm the expression of LIF in OSCC and NOM. The biphasic lower expression of LIF and higher expression of LIF-R in OSCC may indicate a key point of differentiation between NOM and OSCC. The downregulation of LIF expression may be an indication of promotion towards malignancy.
SOX17 regulates uterine epithelial–stromal cross-talk acting via a distal enhancer upstream of Ihh
Mammalian pregnancy depends on the ability of the uterus to support embryo implantation. Previous studies reveal the Sox17 gene as a downstream target of the Pgr- Gata2-dependent transcription network that directs genomic actions in the uterine endometrium receptive for embryo implantation. Here, we report that ablating Sox17 in the uterine epithelium impairs leukemia inhibitory factor (LIF) and Indian hedgehog homolog (IHH) signaling, leading to failure of embryo implantation. In vivo deletion of the SOX17-binding region 19 kb upstream of the Ihh locus by CRISPR-Cas technology reduces Ihh expression specifically in the uterus and alters proper endometrial epithelial–stromal interactions, thereby impairing pregnancy. This SOX17-binding interval is also bound by GATA2, FOXA2, and PGR. This cluster of transcription factor binding is common in 737 uterine genes and may represent a key regulatory element essential for uterine epithelial gene expression. The transcription factor SOX17 is important for uterine gland formation, fertility, and embryo implantation in mouse. Here the authors show that SOX17 is upstream of Indian hedgehog to regulate mouse uterine receptivity, and their analysis of uterine tissue from endometriosis patients suggests the same function in humans.
Impact of anti leukemia inhibitory factor antibody on immune related gene expression in breast cancer Balb/c mouse model
Leukemia inhibitory factor (LIF) is involved in the progression of different cancers. In this study, we investigated the effect of anti-LIF antibodies on immune-related gene expression in the Balb/c mouse model of breast cancer. To immunize mice against LIF, recombinant LIF with Freund adjuvant was injected into the test group, whereas the control group received phosphate-buffered saline with adjuvant. Tumor induction (4T1 cell line) was performed by increasing the antibody titer. The expression of immune-related genes was evaluated by real-time PCR. The anti-LIF titer was significantly increased in the immunized group. The expression of genes related to the differentiation of T helper (Th)-1, Th-2, and Th-17 cells was significantly higher in the immunized group than in the control group. In addition, anti-LIF did not have a significant effect on the expression of genes related to the differentiation of regulatory T cells, and immune checkpoint-associated genes. Additionally, the test group had higher survival and lower tumor development rates. The results demonstrated that the anti-LIF antibody may potentially play a role in the differentiation of immune cells or immune responses. However, further studies utilizing advanced techniques are necessary to validate its function.