Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
228
result(s) for
"Low Density Lipoprotein Receptor-Related Protein-6"
Sort by:
Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells
2019
Wnt-induced β-catenin-mediated transcription is a driving force for stem cell self-renewal during adult tissue homeostasis. Enhanced Wnt receptor expression due to mutational inactivation of the ubiquitin ligases
RNF43
/
ZNRF3
recently emerged as a leading cause for cancer development. Consequently, targeting canonical Wnt receptors such as LRP5/6 holds great promise for treatment of such cancer subsets. Here, we employ CIS display technology to identify single-domain antibody fragments (VHH) that bind the LRP6 P3E3P4E4 region with nanomolar affinity and strongly inhibit Wnt3/3a-induced β-catenin-mediated transcription in cells, while leaving Wnt1 responses unaffected. Structural analysis reveal that individual VHHs variably employ divergent antigen-binding regions to bind a similar surface in the third β-propeller of LRP5/6, sterically interfering with Wnt3/3a binding. Importantly, anti-LRP5/6 VHHs block the growth of Wnt-hypersensitive
Rnf43
/
Znrf3
-mutant intestinal organoids through stem cell exhaustion and collective terminal differentiation. Thus, VHH-mediated targeting of LRP5/6 provides a promising differentiation-inducing strategy for treatment of Wnt-hypersensitive tumors.
Enhanced Wnt receptor activity is a major cause of cancer development. Here the authors identify camelid single-domain antibody fragments (VHHs) that bind to the Wnt receptor LRP5/6 ectodomain, determine the crystal structures and show that these VHHs selectively inhibit Wnt3- mediated cellular responses and block the growth of mutant Wnt-hypersensitive intestinal tumor organoids.
Journal Article
LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration
2021
The adult mammalian heart is thought to be a terminally differentiated organ given the postmitotic nature of cardiomyocytes. Consequently, the potential for cardiac repair through cardiomyocyte proliferation is extremely limited. Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor that is required for embryonic heart development. In this study we investigated the role of LRP6 in heart repair through regulation of cardiomyocyte proliferation.
Lrp6
deficiency increased cardiomyocyte cell cycle activity in neonatal, juvenile and adult mice. Cardiomyocyte-specific deletion of
Lrp6
in the mouse heart induced a robust regenerative response after myocardial infarction (MI), led to reduced MI area and improvement in left ventricular systolic function. In vivo genetic lineage tracing revealed that the newly formed cardiomyocytes in
Lrp6
-deficient mouse hearts after MI were mainly derived from resident cardiomyocytes. Furthermore, we found that the pro-proliferative effect of
Lrp6
deficiency was mediated by the ING5/P21 signaling pathway. Gene therapy using the adeno-associated virus (AAV)9 miRNAi
-Lrp6
construct promoted the repair of heart injury in mice.
Lrp6
deficiency also induced the proliferation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Our study identifies LRP6 as a critical regulator of cardiomyocyte proliferation, which may lead to the development of a novel molecular strategy to promote myocardial regeneration and repair.
Journal Article
Wnt signalosome assembly is governed by conformational flexibility of Axin and by the AP2 clathrin adaptor
2025
Wnt signal transduction relies on the direct inhibition of GSK3 by phosphorylated PPPSPxS motifs within the cytoplasmic tail of the LRP6 co-receptor. How GSK3 is recruited to LRP6 remains unclear. Here, we use nuclear magnetic resonance spectroscopy to identify the membrane-proximal PPPSPxS motif and its flanking sequences as the primary binding site for both Axin and GSK3, and an intrinsically disordered segment of Axin as its LRP6-interacting region (LIR). Co-immunoprecipitation and CRISPR-engineered mutations in endogenous Axin indicate that its docking at LRP6 is antagonized by a phospho-dependent foldback within LIR and by a PRTxR motif that allows Axin and GSK3 to form a multi-pronged interaction which favors their detachment from LRP6. Crucially, signaling by LRP6 also depends on its binding to the AP2 clathrin adaptor. We propose that the Wnt-driven clustering of LRP6 within clathrin-coated locales allows the Axin-GSK complex to dock at adjacent LRP6 molecules, while also exposing it to co-targeted kinases that change its activity in Wnt signal transduction.
Gammons et al. describe how the clustering of the Wnt receptor complex in clathrin-coated locales allows Axin and GSK3 to dock at adjacent tails of the LRP6 co-receptor to assemble a signalosome that transduces the Wnt signal to the nucleus.
Journal Article
Modulation of canonical Wnt signaling by the extracellular matrix component biglycan
by
Berendsen, Agnes D
,
Owens, Rick T
,
Robey, Pamela G
in
Animals
,
Antibodies
,
beta Catenin - metabolism
2011
Although extracellular control of canonical Wnt signaling is crucial for tissue homeostasis, the role of the extracellular microenvironment in modulating this signaling pathway is largely unknown. In the present study, we show that a member of the small leucine-rich proteoglycan family, biglycan, enhances canonical Wnt signaling by mediating Wnt function via its core protein. Immunoprecipitation analysis revealed that biglycan interacts with both the canonical Wnt ligand Wnt3a and the Wnt coreceptor low-density lipoprotein receptor-related protein 6 (LRP6), possibly via the formation of a trimeric complex. Biglycan-deficient cells treated with exogenous Wnt3a had less Wnt3a retained in cell layers compared with WT cells. Furthermore, the Wnt-induced levels of LRP6 phosphorylation and expression of several Wnt target genes were blunted in biglycan-deficient cells. Both recombinant biglycan proteoglycan and biglycan core protein increased Wnt-induced β-catenin/T cell-specific factor–mediated transcriptional activity, and this activity was completely inhibited by Dickkopf 1. Interestingly, recombinant biglycan was able to rescue impaired Wnt signaling caused by a previously described missense mutation in the extracellular domain of human LRP6 (R611C). Furthermore, biglycan's modulation of canonical Wnt signaling affected the functional activities of osteoprogenitor cells, including the RUNX2-mediated transcriptional activity and calcium deposition. Use of a transplant system and a fracture healing model revealed that expression of Wnt-induced secreted protein 1 was decreased in bone formed by biglycan-deficient cells, further suggesting reduced Wnt signaling in vivo. We propose that biglycan may serve as a reservoir for Wnt in the pericellular space and modulate Wnt availability for activation of the canonical Wnt pathway.
Journal Article
Therapeutic Potential of a Monoclonal Antibody Blocking the Wnt Pathway in Diabetic Retinopathy
by
Takahashi, Yusuke
,
Lee, Kyungwon
,
Chen, Ying
in
Analysis
,
Angiogenesis Inhibitors - administration & dosage
,
Angiogenesis Inhibitors - pharmacology
2012
Dysregulation of Wnt/β-catenin signaling contributes to the development of diabetic retinopathy by inducing retinal inflammation, vascular leakage, and neovascularization. Here, we evaluated the inhibitory effect of a monoclonal antibody (Mab) specific for the E1E2 domain of Wnt coreceptor low-density lipoprotein receptor–related protein 6, Mab2F1, on canonical Wnt signaling and its therapeutic potential for diabetic retinopathy. Mab2F1 displayed robust inhibition on Wnt signaling with a half-maximal inhibitory concentration (IC50) of 20 μg/mL in retinal pigment epithelial cells. In addition, Mab2F1 also attenuated the accumulation of β-catenin and overexpression of vascular endothelial growth factor, intercellular adhesion molecule-1, and tumor necrosis factor-α induced by high-glucose medium in retinal endothelial cells. In vivo, an intravitreal injection of Mab2F1 significantly reduced retinal vascular leakage and decreased preretinal vascular cells in oxygen-induced retinopathy (OIR) rats, demonstrating its inhibitory effects on ischemia-induced retinal neovascularization. Moreover, Mab2F1 blocked the overexpression of the inflammatory/angiogenic factors, attenuated leukostasis, and reduced retinal vascular leakage in both early and late stages of streptozotocin-induced diabetes. In conclusion, Mab2F1 inhibits canonical Wnt signaling, vascular leakage, and inflammation in the retina of diabetic retinopathy models, suggesting its potential to be used as a therapeutic agent in combination with other antiangiogenic compounds.
Journal Article
Canonical WNT signaling components in vascular development and barrier formation
by
Wang, Yanshu
,
Tischfield, Max
,
Taketo, Makoto M.
in
Animals
,
beta Catenin - physiology
,
Biomedical research
2014
Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.
Journal Article
Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains
2020
Low-density lipoprotein receptor-related protein 6 (LRP6) is a coreceptor of the β-catenin-dependent Wnt signaling pathway. The LRP6 ectodomain binds Wnt proteins, as well as Wnt inhibitors such as sclerostin (SOST), which negatively regulates Wnt signaling in osteocytes. Although LRP6 ectodomain 1 (E1) is known to interact with SOST, several unresolved questions remain, such as the reason why SOST binds to LRP6 E1E2 with higher affinity than to the E1 domain alone. Here, we present the crystal structure of the LRP6 E1E2–SOST complex with two interaction sites in tandem. The unexpected additional binding site was identified between the C-terminus of SOST and the LRP6 E2 domain. This interaction was confirmed by in vitro binding and cell-based signaling assays. Its functional significance was further demonstrated in vivo using
Xenopus laevis
embryos. Our results provide insights into the inhibitory mechanism of SOST on Wnt signaling.
The low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the β-catenin-dependent Wnt signaling pathway and interacts with the Wnt inhibitor sclerostin (SOST). Here the authors present the crystal structure of SOST in complex with the LRP6 E1E2 ectodomain construct, which reveals that the SOST C-terminus binds to the LRP6 E2 domain, and further validate this binding site with in vitro and in vivo experiments.
Journal Article
Single-molecule dynamics of Dishevelled at the plasma membrane and Wnt pathway activation
by
Chen, Maorong
,
Angers, Stephane
,
He, Xi
in
Activation
,
Biological Sciences
,
Cell Membrane - chemistry
2020
Dvl (Dishevelled) is one of several essential nonenzymatic components of the Wnt signaling pathway. In most current models, Dvl forms complexes with Wnt ligand receptors, Fzd and LRP5/6 at the plasma membrane, which then recruits the destruction complex, eventually leading to inactivation of β-catenin degradation. Although this model is widespread, direct evidence for the individual steps is lacking. In this study, we tagged mEGFP to C terminus of dishevelled2 gene using CRISPR/Cas9-induced homologous recombination and observed its dynamics directly at the single-molecule level with total internal reflection fluorescence (TIRF) microscopy. We focused on two questions: 1) What is the native size and what are the dynamic features of membrane-bound Dvl complexes during Wnt pathway activation? 2) What controls the behavior of these complexes? We found that membrane-bound Dvl2 is predominantly monomer in the absence of Wnt (observed mean size 1.1). Wnt3a stimulation leads to an increase in the total concentration of membrane-bound Dvl2 from 0.12/μm² to 0.54/μm². Wnt3a also leads to increased oligomerization which raises the weighted mean size of Dvl2 complexes to 1.5, with 56.1% of Dvl still as monomers. The driving force for Dvl2 oligomerization is the increased concentration of membrane Dvl2 caused by increased affinity of Dvl2 for Fzd, which is independent of LRP5/6. The oligomerized Dvl2 complexes have increased dwell time, 2 ∼ 3 min, compared to less than 1 s for monomeric Dvl2. These properties make Dvl a unique scaffold, dynamically changing its state of assembly and stability at the membrane in response to Wnt ligands.
Journal Article
Crystal structure of a mammalian Wnt–frizzled complex
2019
Wnt signaling plays fundamental roles in organogenesis, tissue regeneration and cancer, but high-resolution structural information of mammalian Wnt proteins is lacking. We solved a 2.8-Å resolution crystal structure of human Wnt3 in complex with mouse Frizzled 8 Cys-rich domain (CRD). Wnt3 grabs the receptor in a manner very similar to that found in Xenopus Wnt8 complexed with the same receptor. Unlike Xenopus Wnt8-bound CRD, however, Wnt3-bound CRD formed a symmetrical dimer in the crystal by exchanging the tip of the unsaturated acyl chain attached to each Wnt3, confirming the ability of Wnt and Frizzled CRD to form a 2:2 complex. The hypervariable ‘linker’ region of Wnt3 formed a β-hairpin protrusion opposite from the Frizzled binding interface, consistent with its proposed role in the coreceptor recognition. Direct binding between this segment and the Wnt coreceptor LRP6 was confirmed, enabling us to build a structural model of the Wnt–Frizzled–LRP6 ternary complex.Takagi and colleagues report the crystal structure of human Wnt3 in complex with the mouse Frizzled 8 Cys-rich domain, a structural model of the Wnt–Frizzled–LRP6 ternary complex and engineered tagged versions of Wnt3a that retain biological function.
Journal Article
Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts
2019
Aggressive behaviours of solid tumours are highly influenced by the tumour microenvironment. Multiple signalling pathways can affect the normal function of stromal fibroblasts in tumours, but how these events are coordinated to generate tumour-promoting cancer-associated fibroblasts (CAFs) is not well understood. Here we show that stromal expression of Dickkopf-3 (DKK3) is associated with aggressive breast, colorectal and ovarian cancers. We demonstrate that DKK3 is a HSF1 effector that modulates the pro-tumorigenic behaviour of CAFs in vitro and in vivo. DKK3 orchestrates a concomitant activation of β-catenin and YAP/TAZ. Whereas β-catenin is dispensable for CAF-mediated ECM remodelling, cancer cell growth and invasion, DKK3-driven YAP/TAZ activation is required to induce tumour-promoting phenotypes. Mechanistically, DKK3 in CAFs acts via canonical Wnt signalling by interfering with the negative regulator Kremen and increasing cell-surface levels of LRP6. This work reveals an unpredicted link between HSF1, Wnt signalling and YAP/TAZ relevant for the generation of tumour-promoting CAFs.
It is unclear how specific signalling pathways are coordinated to generate pathologically activated cancer associated fibroblasts (CAFs). Here, Ferrari et al show that stromal expression of Dickkopf-3 (DKK3) associates with aggressive tumours. DKK3 is a HSF-1 effector that activates β-catenin and YAP/TAZ, and DKK3-driven YAP/TAZ activation regulates the pro-tumorigenic behaviour of CAFs.
Journal Article