Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,670 result(s) for "Mammary Glands, Animal - cytology"
Sort by:
Distinct stem cells contribute to mammary gland development and maintenance
The mammary epithelium is composed of several cell lineages including luminal, alveolar and myoepithelial cells. Transplantation studies have suggested that the mammary epithelium is maintained by the presence of multipotent mammary stem cells. To define the cellular hierarchy of the mammary gland during physiological conditions, we performed genetic lineage-tracing experiments and clonal analysis of the mouse mammary gland during development, adulthood and pregnancy. We found that in postnatal unperturbed mammary gland, both luminal and myoepithelial lineages contain long-lived unipotent stem cells that display extensive renewing capacities, as demonstrated by their ability to clonally expand during morphogenesis and adult life as well as undergo massive expansion during several cycles of pregnancy. The demonstration that the mammary gland contains different types of long-lived stem cells has profound implications for our understanding of mammary gland physiology and will be instrumental in unravelling the cells at the origin of breast cancers. Mammary stem cells Using lineage-tracing approaches in mice, Cédric Blanpain and colleagues decipher the cellular hierarchy of the mammary epithelium during development, homeostasis and lactation. They find that the various cell lineages of mammary epithelium originate from and are maintained by different classes of unipotent stem cells rather than by multipotent stem cells, as was previously thought. As well as having implications for our understanding of mammary gland physiology, this finding is of relevance to attempts to identify the cells at the origin of breast cancers.
Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche
Macrophages engulf damaged and dead cells to clear infection, but they also participate in tissue regeneration. Chakrabarti et al. expand the macrophage repertoire for mammary gland development (see the Perspective by Kannan and Eaves). Mammary gland stem cells secrete the Notch ligand Dll1 and activate Notch signaling, which promotes survival of adjacent macrophages. This stimulates production of Wnt ligands, which signal back to the mammary gland stem cells. This cross-talk plays an important role in coordinating mammary gland development, tissue homeostasis, and, not least, breast cancer. Science , this issue p. eaan4153 ; see also p. 1401 Cross-talk between mammary stem cells and macrophages involves Notch and Wnt to regulate mammary development and function. The stem cell niche is a specialized environment that dictates stem cell function during development and homeostasis. We show that Dll1, a Notch pathway ligand, is enriched in mammary gland stem cells (MaSCs) and mediates critical interactions with stromal macrophages in the surrounding niche in mouse models. Conditional deletion of Dll1 reduced the number of MaSCs and impaired ductal morphogenesis in the mammary gland. Moreover, MaSC-expressed Dll1 activates Notch signaling in stromal macrophages, increasing their expression of Wnt family ligands such as Wnt3, Wnt10A, and Wnt16, thereby initiating a feedback loop that promotes the function of Dll1-expressing MaSCs. Together, these findings reveal functionally important cross-talk between MaSCs and their macrophageal niche through Dll1-mediated Notch signaling.
Adipocyte hypertrophy and lipid dynamics underlie mammary gland remodeling after lactation
Adipocytes undergo pronounced changes in size and behavior to support diverse tissue functions, but the mechanisms that control these changes are not well understood. Mammary gland-associated white adipose tissue (mgWAT) regresses in support of milk fat production during lactation and expands during the subsequent involution of milk-producing epithelial cells, providing one of the most marked physiological examples of adipose growth. We examined cellular mechanisms and functional implications of adipocyte and lipid dynamics in the mouse mammary gland (MG). Using in vivo analysis of adipocyte precursors and genetic tracing of mature adipocytes, we find mature adipocyte hypertrophy to be a primary mechanism of mgWAT expansion during involution. Lipid tracking and lipidomics demonstrate that adipocytes fill with epithelial-derived milk lipid. Furthermore, ablation of mgWAT during involution reveals an essential role for adipocytes in milk trafficking from, and proper restructuring of, the mammary epithelium. This work advances our understanding of MG remodeling and tissue-specific roles for adipocytes. During mammary gland involution, the organ undergoes extensive remodeling. Here, the authors explore the role of mammary gland adipose tissue (mgWAT) in this process and demonstrate that adipocyte hypertrophy and lipid trafficking underlie mgWAT expansion and epithelial regression.
Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing
Characterising the hierarchy of mammary epithelial cells (MECs) and how they are regulated during adult development is important for understanding how breast cancer arises. Here we report the use of single-cell RNA sequencing to determine the gene expression profile of MECs across four developmental stages; nulliparous, mid gestation, lactation and post involution. Our analysis of 23,184 cells identifies 15 clusters, few of which could be fully characterised by a single marker gene. We argue instead that the epithelial cells—especially in the luminal compartment—should rather be conceptualised as being part of a continuous spectrum of differentiation. Furthermore, our data support the existence of a common luminal progenitor cell giving rise to intermediate, restricted alveolar and hormone-sensing progenitors. This luminal progenitor compartment undergoes transcriptional changes in response to a full pregnancy, lactation and involution. In summary, our results provide a global, unbiased view of adult mammary gland development. There is a need to understand how mammary epithelial cells respond to changes at various developmental stages. Here, the authors use single-cell RNA sequencing of mammary epithelial cells at different adult developmental stages, identifying different cell types and charting their developmental trajectory.
In situ identification of bipotent stem cells in the mammary gland
The mammary epithelium undergoes profound morphogenetic changes during development. Architecturally, it comprises two primary lineages, the inner luminal and outer myoepithelial cell layers. Two opposing concepts on the nature of mammary stem cells (MaSCs) in the postnatal gland have emerged. One model, based on classical transplantation assays, postulates that bipotent MaSCs have a key role in coordinating ductal epithelial expansion and maintenance in the adult gland, whereas the second model proposes that only unipotent MaSCs identified by lineage tracing contribute to these processes. Through clonal cell-fate mapping studies using a stochastic multicolour cre reporter combined with a new three-dimensional imaging strategy, we provide evidence for the existence of bipotent MaSCs as well as distinct long-lived progenitor cells. The cellular dynamics at different developmental stages support a model in which both stem and progenitor cells drive morphogenesis during puberty, whereas bipotent MaSCs coordinate ductal homeostasis and remodelling of the mouse adult gland. Through the use of a novel three-dimensional imaging technique, used in conjunction with a multicolour reporter that allows lineage tracing and cell tracking of entire mammary ducts in vivo , bipotent stem cells are shown to have a central role in both puberty and long-term maintenance; in addition, long-lived luminal progenitor cells with a prominent role in ductal expansion are identified. Active bipotent stem cells in the mammary gland The respective roles of bipotent and unipotent stem cells in the mammalian mammary gland are a focus of much current research. Jane Visvader and colleagues have developed a three-dimensional imaging technique to use in combination with a stochastic multicolour reporter that allows lineage tracing at a clonal level and cell tracking in vivo of entire mammary ducts. Using this approach the authors show that bipotent mammary stem cells have a central role in the morphogenesis of the gland during puberty and in long-term maintenance. They also identify long-lived luminal progenitor cells in situ that have a prominent role in ductal expansion.
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling
The mammary epithelium comprises two primary cellular lineages, but the degree of heterogeneity within these compartments and their lineage relationships during development remain an open question. Here we report single-cell RNA profiling of mouse mammary epithelial cells spanning four developmental stages in the post-natal gland. Notably, the epithelium undergoes a large-scale shift in gene expression from a relatively homogeneous basal-like program in pre-puberty to distinct lineage-restricted programs in puberty. Interrogation of single-cell transcriptomes reveals different levels of diversity within the luminal and basal compartments, and identifies an early progenitor subset marked by CD55. Moreover, we uncover a luminal transit population and a rare mixed-lineage cluster amongst basal cells in the adult mammary gland. Together these findings point to a developmental hierarchy in which a basal-like gene expression program prevails in the early post-natal gland prior to the specification of distinct lineage signatures, and the presence of cellular intermediates that may serve as transit or lineage-primed cells. The mammary epithelium comprises two cell lineages but the heterogeneity amongst these during development is unclear. Here, the authors report single-cell RNA sequencing of the mouse mammary epithelium at four developmental stages, revealing diversity in both compartments and a transcriptional shift with puberty onset.
Heterotypic cell–cell communication regulates glandular stem cell multipotency
Glandular epithelia, including the mammary and prostate glands, are composed of basal cells (BCs) and luminal cells (LCs) 1 , 2 . Many glandular epithelia develop from multipotent basal stem cells (BSCs) that are replaced in adult life by distinct pools of unipotent stem cells 1 , 3 – 8 . However, adult unipotent BSCs can reactivate multipotency under regenerative conditions and upon oncogene expression 3 , 9 – 13 . This suggests that an active mechanism restricts BSC multipotency under normal physiological conditions, although the nature of this mechanism is unknown. Here we show that the ablation of LCs reactivates the multipotency of BSCs from multiple epithelia both in vivo in mice and in vitro in organoids. Bulk and single-cell RNA sequencing revealed that, after LC ablation, BSCs activate a hybrid basal and luminal cell differentiation program before giving rise to LCs—reminiscent of the genetic program that regulates multipotency during embryonic development 7 . By predicting ligand–receptor pairs from single-cell data 14 , we find that TNF—which is secreted by LCs—restricts BC multipotency under normal physiological conditions. By contrast, the Notch, Wnt and EGFR pathways were activated in BSCs and their progeny after LC ablation; blocking these pathways, or stimulating the TNF pathway, inhibited regeneration-induced BC multipotency. Our study demonstrates that heterotypic communication between LCs and BCs is essential to maintain lineage fidelity in glandular epithelial stem cells. The multipotency of basal stem cells is directly regulated by luminal cells through the secretion of TNF, and, following luminal cell ablation, the Notch, Wnt and EGFR signalling pathways reactivate basal cell multipotency.
Single cell transcriptome atlas of mouse mammary epithelial cells across development
Background Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. Methods The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. Results The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. Conclusions This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.
Contractile fibroblasts form a transient niche for the branching mammary epithelium
Fibroblasts are stromal cells found in connective tissue that are critical for organ development, tissue homeostasis and pathology. Single-cell transcriptomic analyses have revealed a high level of inter- and intra-organ heterogeneity of fibroblasts. However, the functional implications and lineage relations of different fibroblast subtypes remained unexplored, especially in the mammary gland. Here, we provide a comprehensive characterization of pubertal mouse mammary fibroblasts, through single-cell RNA sequencing, spatial mapping, functional assays, and in vivo lineage tracing. We unravel a transient niche-forming population of specialized contractile fibroblasts that exclusively localize around the tips of the growing mammary epithelium and are recruited from preadipocytes in the surrounding fat pad stroma. Using organoid-fibroblast co-cultures we reveal that different fibroblast populations can acquire contractile features when in direct contact with the epithelium, promoting organoid branching. The detailed in vivo characterization of these specialized cells and their lineage history provides insights into fibroblast heterogeneity and implicates their importance for creating a signalling niche during mouse mammary gland development. Fibroblasts represent a heterogenous cell population but how their differences reflect their plasticity and origin is not fully understood. Here, the authors map the origin and fate of a transient contractile fibroblast population that forms a niche supporting pubertal mammary gland branching and growth.