Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,858 result(s) for "Mammary Glands, Animal - drug effects"
Sort by:
The effects of Thymus capitatus essential oil topical application on milk quality: a systems biology approach
Essential oils (EO) are known for their antibacterial and anti-inflammatory properties and can be used as an alternative to reduce the reliance on antimicrobials in dairy cattle. While many studies have explored the beneficial properties of EO in vitro, their effects on milk quality and milk microbiota, when applied directly to the udder skin, remain relatively unknown. This study aimed to investigate the impact of Thymus capitatus essential oil (TCEO), known for its high antibacterial and antioxidant properties, on milk microbiota using 16S rRNA sequencing, the lipidomic profile via liquid chromatography-quadrupole time-of-flight mass spectrometry, udder skin microbiota, and inflammatory biomarkers of dairy cows at the end of lactation. Sixteen-quarters of 12 Holstein cows were selected, and TCEO was topically applied to the udder skin twice a day for 7 days. Milk was collected aseptically on days 0, 7, 21, and 28 before morning farm milking. The results showed no significant changes in microbiota composition after the EO treatment in alpha and beta diversity or taxonomical composition at the phylum and genus levels. TCEO induced limited changes in the milk lipidome, primarily affecting diacylglycerols at T21. The treatment did not affect inflammatory biomarkers, milk sensory properties, or quality. Our study is the first to demonstrate that a local application of 10% TCEO on cow’s quarters does not significantly alter milk quality or microbiota composition in milk and skin. More studies should be conducted to ensure the safe use of TCEO in dairy cows and explore its potential benefits on antibiotic-resistant bacteria as an alternative or support for antibiotic therapy.
Stromal PTEN determines mammary epithelial response to radiotherapy
The importance of the tumor–associated stroma in cancer progression is clear. However, it remains uncertain whether early events in the stroma are capable of initiating breast tumorigenesis. Here, we show that in the mammary glands of non-tumor bearing mice, stromal-specific phosphatase and tensin homolog ( Pten ) deletion invokes radiation-induced genomic instability in neighboring epithelium. In these animals, a single dose of whole-body radiation causes focal mammary lobuloalveolar hyperplasia through paracrine epidermal growth factor receptor (EGFR) activation, and EGFR inhibition abrogates these cellular changes. By analyzing human tissue, we discover that stromal PTEN is lost in a subset of normal breast samples obtained from reduction mammoplasty, and is predictive of recurrence in breast cancer patients. Combined, these data indicate that diagnostic or therapeutic chest radiation may predispose patients with decreased stromal PTEN expression to secondary breast cancer, and that prophylactic EGFR inhibition may reduce this risk. The tumor microenvironment influences tumor progression. Here the authors show that lack of stromal PTEN phosphatase induces DNA repair defects in the neighboring mammary gland epithelial cells via hyperactivation of EGF-receptor signaling, resulting in higher radiation-induced DNA damage and hyperplasia.
Characterizing serotonin expression throughout bovine mammary gland developmental stages and its relationship with 17β-estradiol at puberty
Serotonin acts in an autocrine/paracrine manner within the mammary epithelium regulating cell homeostasis during lactation and cell turnover during involution after milk stasis. However, the presence and role of mammary serotonin during the pubertal developmental stage is unknown in the bovine. Here, we characterized the serotonin receptor profile and serotonin immunolocalization in bovine mammary tissue at eight developmental stages (i.e., birth, weaning, puberty, six months gestation, early lactation, mid-lactation, early dry and late dry, n = 6/stage). Further, we investigated the effects of 5-HTP (serotonin precursor), 17β-estradiol (E 2 ), and ICI 182780 (ERα antagonist) either alone or in various combinations (i.e., 5-HTP +  E 2 , 5-HTP + ICI, E 2  + ICI or 5-HTP + E 2 + ICI) on cultured bovine mammary epithelial cells (MAC-T). Serotonin receptor gene expression is highly dynamic throughout mammary development, particularly highly expressed in the puberty stage expressing 12 out of the 13 serotonin receptors evaluated ( 5-HTR1A , -1B , -1D , -1F , -2A, -2B, -2C, -3B, -4, -5a, -6, and -7 ), relative to the birth stage. Following a 24-hour incubation, all treatments except ICI increased MAC-T cell proliferation. Incubation with 5-HTP + ICI resulted in a downregulation of ESR1 , ESR2 , GPER1 and AREG, relative to CON. Incubation with 5-HTP and E 2 alone downregulated the expression of TPH1 , 5-HTR1A and 5-HTR1B , relative to CON. Overall, our data indicates serotonin is present in the juvenile developing mammary tissue and the expression of various receptors is observed suggesting an active involvement at this early stage. Additionally, serotonin might indirectly regulate mammary epithelial cell proliferation alone and concurrently with E 2 during puberty through the modulation of E 2 signaling genes and 5-HTR1A and -1B .
Bisphenol A alters the development of the rhesus monkey mammary gland
The xenoestrogen bisphenol A (BPA) used in the manufacturing of various plastics and resins for food packaging and consumer products has been shown to produce numerous endocrine and developmental effects in rodents. Exposure to low doses of BPA during fetal mammary gland development resulted in significant alterations in the gland’s morphology that varied from subtle ones observed during the exposure period to precancerous and cancerous lesions manifested in adulthood. This study assessed the effects of BPA on fetal mammary gland development in nonhuman primates. Pregnant rhesus monkeys were fed 400 μg of BPA per kg of body weight daily from gestational day 100 to term, which resulted in 0.68 ± 0.312 ng of unconjugated BPA per mL of maternal serum, a level comparable to that found in humans. At birth, the mammary glands of female offspring were removed for morphological analysis. Morphological parameters similar to those shown to be affected in rodents exposed prenatally to BPA were measured in whole-mounted glands; estrogen receptor (ER) α and β expression were assessed in paraffin sections. Student's t tests for equality of means were used to assess differences between exposed and unexposed groups. The density of mammary buds was significantly increased in BPA-exposed monkeys, and the overall development of their mammary gland was more advanced compared with unexposed monkeys. No significant differences were observed in ER expression. Altogether, gestational exposure to the estrogen-mimic BPA altered the developing mammary glands of female nonhuman primates in a comparable manner to that observed in rodents.
Effects of lysine and methionine on mRNA expression of candidate transcription factors by primary bovine mammary epithelial cells
It has been established that essential amino acids (EAA) regulate protein synthesis in mammary epithelial cells by rapidly altering the phosphorylation state of translation factors. However, the long-term transcriptional response to EAA supply has been investigated much less. Eight transcription factors were selected as candidate mediators of EAA effects on mammary cell function via the amino acid response ( ATF4 , ATF6 ), mitogen-activated protein kinase ( JUN , FOS , EGR1 ), and mechanistic target of rapamycin complex 1 ( MYC , HIF1A , SREBF1 ). The objective was to determine if and when expression of these candidate genes was affected in primary cultures of bovine mammary epithelial cells more than 24 h after imposing an EAA deficiency, and to evaluate effects of EAA deficiency on protein synthesis, endoplasmic reticulum size, cell proliferation, and lipogenesis. Differentiated cells were cultured in 1 of 3 treatment media representing normal physiological concentrations of all amino acids (CTL), low lysine (LK), or low methionine (LM) for 24, 40, 48, or 60 h. Both LK and LM suppressed protein synthesis and activated ATF4 expression, indicating the classic amino acid response pathway had been triggered. However, there was no effect of LK or LM on endoplasmic reticulum size, possibly related to elevated ATF6 expression on LM. Expression of early response genes JUN , FOS , EGR1 and MYC was not elevated by EAA deficiency but LM decreased EGR1 expression. LM also increased expression of HIF1A . The EGR1 and HIF1A expression results are consistent with the decrease in cell proliferation rate observed. Variable responses in SREBF1 expression to LK and LM at different timepoints may have contributed to a lack of effect on lipogenesis rates. These findings indicate that EAA deficiency may inhibit mammary protein synthesis and cell proliferation through transcription factors.
Defective Mammary Epithelial Outgrowth in Transgenic EKAREV–NLS Mice: Correction via Estrogen Supplementation and Genetic Background Modification
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs. In this study, we report a significant defect in mammary epithelial development in EKAREV-NLS C57BL/6J female mice. Our findings reveal that these mice exhibit severely impaired mammary epithelial outgrowth, linked to systemic defects including disrupted estrous cycling, impaired ovarian follicle maturation, anovulation, and reduced reproductive fitness. Notably, estrogen supplementation was sufficient to enhance mammary epithelial growth in the EKAREV-NLS C57BL/6J females. Furthermore, outcrossing to the ICR genetic background fully restored normal mammary epithelial outgrowth, indicating that the observed phenotype is dependent on genetic background. We also confirmed the functional performance of the biosensor in hormone-supplemented and outcrossed tissues through time-lapse imaging of primary mammary epithelial cells. Our results underscore the critical need for thorough characterization of biosensor-carrying models before their application in specific research contexts. Additionally, this work highlights the influence of hormonal and genetic factors on mammary gland development and emphasizes the importance of careful consideration when selecting biosensor strains for mammary studies.
Endocrine Disruptors and the Breast: Early Life Effects and Later Life Disease
Breast cancer risk has both heritable and environment/lifestyle components. The heritable component is a small contribution (5–27 %), leaving the majority of risk to environment (e.g., applied chemicals, food residues, occupational hazards, pharmaceuticals, stress) and lifestyle (e.g., physical activity, cosmetics, water source, alcohol, smoking). However, these factors are not well-defined, primarily due to the enormous number of factors to be considered. In both humans and rodent models, environmental factors that act as endocrine disrupting compounds (EDCs) have been shown to disrupt normal mammary development and lead to adverse lifelong consequences, especially when exposures occur during early life. EDCs can act directly or indirectly on mammary tissue to increase sensitivity to chemical carcinogens or enhance development of hyperplasia, beaded ducts, or tumors. Protective effects have also been reported. The mechanisms for these changes are not well understood. Environmental agents may also act as carcinogens in adult rodent models, directly causing or promoting tumor development, typically in more than one organ. Many of the environmental agents that act as EDCs and are known to affect the breast are discussed. Understanding the mechanism(s) of action for these compounds will be critical to prevent their effects on the breast in the future.
Low-Dose BPA Exposure Alters the Mesenchymal and Epithelial Transcriptomes of the Mouse Fetal Mammary Gland
Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA) causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a) associated with changes in mRNA expression reflecting estrogenic actions and/or b) dependent on the estrogen receptor α (ERα), we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2) on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E) 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.
Nutritional combinatorial impact on the gut microbiota and plasma short-chain fatty acids levels in the prevention of mammary cancer in Her2/neu estrogen receptor-negative transgenic mice
Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia , Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.
Identification of quiescent and spatially restricted mammary stem cells that are hormone responsive
Despite accumulating evidence for a mammary differentiation hierarchy, the basal compartment comprising stem cells remains poorly characterized. Through gene expression profiling of Lgr5 + basal epithelial cells, we identify a new marker, Tetraspanin8 (Tspan8). Fractionation based on Tspan8 and Lgr5 expression uncovered three distinct mammary stem cell (MaSC) subsets in the adult mammary gland. These exist in a largely quiescent state but differ in their reconstituting ability, spatial localization, and their molecular and epigenetic signatures. Interestingly, the deeply quiescent MaSC subset (Lgr5 + Tspan8 hi ) resides within the proximal region throughout life, and has a transcriptome strikingly similar to that of claudin-low tumours. Lgr5 + Tspan8 hi cells appear to originate from the embryonic mammary primordia before switching to a quiescent state postnatally but can be activated by ovarian hormones. Our findings reveal an unexpected degree of complexity within the adult MaSC compartment and identify a dormant subset poised for activation in response to physiological stimuli. Fu  et al.  define a heterogeneous population of MaSC subsets based on the expression of LGR5 and TSPAN8, with varying anatomical locations in the mouse mammary ductal tree, in vivo repopulating abilities, cell cycle status and molecular signatures.