Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,077
result(s) for
"Microglia - drug effects"
Sort by:
Protective Effects of α-Tocopherol, γ-Tocopherol and Oleic Acid, Three Compounds of Olive Oils, and No Effect of Trolox, on 7-Ketocholesterol-Induced Mitochondrial and Peroxisomal Dysfunction in Microglial BV-2 Cells
by
Martine, Lucy
,
Bretillon, Lionel
,
Moreau, Thibault
in
alpha-Tocopherol - pharmacology
,
Animals
,
Antioxidants - pharmacology
2016
Lipid peroxidation products, such as 7-ketocholesterol (7KC), may be increased in the body fluids and tissues of patients with neurodegenerative diseases and trigger microglial dysfunction involved in neurodegeneration. It is therefore important to identify synthetic and natural molecules able to impair the toxic effects of 7KC. We determined the impact of 7KC on murine microglial BV-2 cells, especially its ability to trigger mitochondrial and peroxisomal dysfunction, and evaluated the protective effects of α- and γ-tocopherol, Trolox, and oleic acid (OA). Multiple complementary chemical assays, flow cytometric and biochemical methods were used to evaluate the antioxidant and cytoprotective properties of these molecules. According to various complementary assays to estimate antioxidant activity, only α-, and γ-tocopherol, and Trolox had antioxidant properties. However, only α-tocopherol, γ-tocopherol and OA were able to impair 7KC-induced loss of mitochondrial transmembrane potential, which is associated with increased permeability to propidium iodide, an indicator of cell death. In addition, α-and γ-tocopherol, and OA were able to prevent the decrease in Abcd3 protein levels, which allows the measurement of peroxisomal mass, and in mRNA levels of Abcd1 and Abcd2, which encode for two transporters involved in peroxisomal β-oxidation. Thus, 7KC-induced side effects are associated with mitochondrial and peroxisomal dysfunction which can be inversed by natural compounds, thus supporting the hypothesis that the composition of the diet can act on the function of organelles involved in neurodegenerative diseases.
Journal Article
Accumulating Microglia Phagocytose Injured Neurons in Hippocampal Slice Cultures: Involvement of p38 MAP Kinase
by
Katayama, Takahiro
,
Yamasaki-Katayama, Yuko
,
Okamura, Toshiyuki
in
Accumulation
,
Animals
,
Aspartate
2012
In this study, microglial migration and phagocytosis were examined in mouse organotypic hippocampal slice cultures, which were treated with N-methyl-D-aspartate (NMDA) to selectively injure neuronal cells. Microglial cells were visualized by the expression of enhanced green fluorescent protein. Daily observation revealed microglial accumulation in the pyramidal cell layer, which peaked 5 to 6 days after NMDA treatment. Time-lapse imaging showed that microglia migrated to the pyramidal cell layer from adjacent and/or remote areas. There was no difference in the number of proliferating microglia between control and NMDA-treated slices in both the pyramidal cell layer and stratum radiatum, suggesting that microglial accumulation in the injured areas is mainly due to microglial migration, not to proliferation. Time-lapse imaging also showed that the injured neurons, which were visualized by propidium iodide (PI), disappeared just after being surrounded by microglia. Daily observation revealed that the intensity of PI fluorescence gradually attenuated, and this attenuation was suppressed by pretreatment with clodronate, a microglia toxin. These findings suggest that accumulating microglia phagocytosed injured neurons, and that PI fluorescence could be a useful indicator for microglial phagocytosis. Using this advantage to examine microglial phagocytosis in living slice cultures, we investigated the involvements of mitogen-activated protein (MAP) kinases in microglial accumulation and phagocytosis. p38 MAP kinase inhibitor SB203580, but not MAP kinase/extracellular signal-regulated kinase inhibitor PD98059 or c-Jun N-terminal kinase inhibitor SP600125, suppressed the attenuation of PI fluorescence. On the other hand, microglial accumulation in the injured areas was not inhibited by any of these inhibitors. These data suggest that p38 MAP kinase plays an important role in microglial phagocytosis of injured neurons.
Journal Article
Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy
2021
Alzheimer’s disease (AD) is the most prevalent cause of dementia
1
. Although there is no effective treatment for AD, passive immunotherapy with monoclonal antibodies against amyloid beta (Aβ) is a promising therapeutic strategy
2
,
3
. Meningeal lymphatic drainage has an important role in the accumulation of Aβ in the brain
4
, but it is not known whether modulation of meningeal lymphatic function can influence the outcome of immunotherapy in AD. Here we show that ablation of meningeal lymphatic vessels in 5xFAD mice (a mouse model of amyloid deposition that expresses five mutations found in familial AD) worsened the outcome of mice treated with anti-Aβ passive immunotherapy by exacerbating the deposition of Aβ, microgliosis, neurovascular dysfunction, and behavioural deficits. By contrast, therapeutic delivery of vascular endothelial growth factor C improved clearance of Aβ by monoclonal antibodies. Notably, there was a substantial overlap between the gene signature of microglia from 5xFAD mice with impaired meningeal lymphatic function and the transcriptional profile of activated microglia from the brains of individuals with AD. Overall, our data demonstrate that impaired meningeal lymphatic drainage exacerbates the microglial inflammatory response in AD and that enhancement of meningeal lymphatic function combined with immunotherapies could lead to better clinical outcomes.
Meningeal lymphatic drainage can affect the microglial inflammatory response and anti-amyloid-β immunotherapy in mouse models of Alzheimer’s disease.
Journal Article
Restoring metabolism of myeloid cells reverses cognitive decline in ageing
2021
Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty
1
–
3
. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer’s disease
4
–
6
. Systemically, circulating pro-inflammatory factors can promote cognitive decline
7
,
8
, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration
9
,
10
. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E
2
(PGE
2
), a major modulator of inflammation
11
. In ageing macrophages and microglia, PGE
2
signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.
In aged mice, inhibition of prostaglandin E
2
(PGE
2
) signalling through its receptor EP2 improves cellular bioenergetics, reduces inflammatory responses and restores hippocampal plasticity to youthful levels, resulting in an improvement in spatial memory and cognition.
Journal Article
A polarizing question: do M1 and M2 microglia exist?
2016
In the twenty-first century, microglia came of age. Their remarkable ontogeny, unique functions and gene expression profile, process motility, and disease relevance have all been highlighted. Neuroscientists interested in microglia encounter an obsolete concept, M1/M2 polarization, suggesting experimental strategies that produce neither conceptual nor technical advances. Ransohoff's Perspective argues against applying this flawed paradigm.
Microglial research has entered a fertile, dynamic phase characterized by novel technologies including two-photon imaging, whole-genome transcriptomic and epigenomic analysis with complementary bioinformatics, unbiased proteomics, cytometry by time of flight (CyTOF; Fluidigm) cytometry, and complex high-content experimental models including slice culture and zebrafish. Against this vivid background of newly emerging data, investigators will encounter in the microglial research literature a body of published work using the terminology of macrophage polarization, most commonly into the M1 and M2 phenotypes. It is the assertion of this opinion piece that microglial polarization has not been established by research findings. Rather, the adoption of this schema was undertaken in an attempt to simplify data interpretation at a time when the ontogeny and functional significance of microglia had not yet been characterized. Now, terminology suggesting established meaningful pathways of microglial polarization hinders rather than aids research progress and should be discarded.
Journal Article
The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease
by
Stefanoni, Davide
,
D’Alessandro, Angelo
,
Marchetti, Carlo
in
Administration, Oral
,
Alzheimer Disease - complications
,
Alzheimer Disease - drug therapy
2020
Numerous studies demonstrate that neuroinflammation is a key player in the progression of Alzheimer’s disease (AD). Interleukin (IL)-1β is a main inducer of inflammation and therefore a prime target for therapeutic options. The inactive IL-1β precursor requires processing by the the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome into a mature and active form. Studies have shown that IL-1β is up-regulated in brains of patients with AD, and that genetic inactivation of the NLRP3 inflammasome improves behavioral tests and synaptic plasticity phenotypes in a murine model of the disease. In the present study, we analyzed the effect of pharmacological inhibition of the NLRP3 inflammasome using dapansutrile (OLT1177), an oral NLRP3-specific inhibitor that is safe in humans. Six-month-old WT and APP/PS1 mice were fed with standard mouse chow or OLT1177-enriched chow for 3 mo. The Morris water maze test revealed an impaired learning and memory ability of 9-mo-old APP/PS1 mice (P = 0.001), which was completely rescued by OLT1177 fed to mice (P = 0.008 to untreated APP/PS1). Furthermore, our findings revealed that 3 mo of OLT1177 diet can rescue synaptic plasticity in this mouse model of AD (P = 0.007 to untreated APP/PS1). In addition, microglia were less activated (P = 0.07) and the number of plaques was reduced in the cortex (P = 0.03) following NLRP3 inhibition with OLT1177 administration. We also observed an OLT1177 dose-dependent normalization of plasma metabolic markers of AD to those of WT mice. This study suggests the therapeutic potential of treating neuroinflammation with an oral inhibitor of the NLRP3 inflammasome.
Journal Article
Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model
2019
Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial surface receptor genetically linked to the risk for Alzheimer’s disease (AD). A proteolytic product, soluble TREM2 (sTREM2), is abundant in the cerebrospinal fluid and its levels positively correlate with neuronal injury markers. To gain insights into the pathological roles of sTREM2, we studied sTREM2 in the brain of 5xFAD mice, a model of AD, by direct stereotaxic injection of recombinant sTREM2 protein or by adeno-associated virus (AAV)-mediated expression. We found that sTREM2 reduces amyloid plaque load and rescues functional deficits of spatial memory and long-term potentiation. Importantly, sTREM2 enhances microglial proliferation, migration, clustering in the vicinity of amyloid plaques and the uptake and degradation of Aβ. Depletion of microglia abolishes the neuroprotective effects of sTREM2. Our study demonstrates a protective role of sTREM2 against amyloid pathology and related toxicity and suggests that increasing sTREM2 can be explored for AD therapy.
TREM2 is a genetic risk factor for Alzheimer’s disease, and soluble TREM2 (sTREM2) in the CSF correlates with AD progression. Here the authors study the role of sTREM2 in a mouse model of Alzheimer’s disease, and find it reduces amyloid accumulation and increases the numbers of plaque-associated microglia which correlates with improved behavioural function in the mice.
Journal Article
Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation
2019
Self-assembling natural drug hydrogels formed without structural modification and able to act as carriers are of interest for biomedical applications. A lack of knowledge about natural drug gels limits there current application. Here, we report on rhein, a herbal natural product, which is directly self-assembled into hydrogels through noncovalent interactions. This hydrogel shows excellent stability, sustained release and reversible stimuli-responses. The hydrogel consists of a three-dimensional nanofiber network that prevents premature degradation. Moreover, it easily enters cells and binds to toll-like receptor 4. This enables rhein hydrogels to significantly dephosphorylate IκBα, inhibiting the nuclear translocation of p65 at the NFκB signalling pathway in lipopolysaccharide-induced BV2 microglia. Subsequently, rhein hydrogels alleviate neuroinflammation with a long-lasting effect and little cytotoxicity compared to the equivalent free-drug in vitro. This study highlights a direct self-assembly hydrogel from natural small molecule as a promising neuroinflammatory therapy.
There is interest in the development of drug-based hydrogels for responsive sustained drug release. Here, the authors report on the self-assembly of natural small molecule, rhein, into hydrogels and the application of the hydrogels as stable controlled release agents for neuro-inflammatory therapy
Journal Article
Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain
by
Andriessen, Amanda S.
,
Jiang, Changyu
,
Chen, Gang
in
Analgesics - administration & dosage
,
Analgesics - metabolism
,
Animals
2020
Interactions between central glial cells and neurons in the pain circuitry are critical contributors to the pathogenesis of chronic pain. In the central nervous system (CNS), two major glial cell types predominate: astrocytes and microglia. Injuries or pathological conditions which evoke pain are concurrently associated with the presence of a reactive microglia or astrocyte state, which is characterized by a variety of changes in the morphological, molecular, and functional properties of these cells. In this review, we highlight the changes that reactive microglia and astrocytes undergo following painful injuries and insults and discuss the critical and interactive role these two cell types play in the initiation and maintenance of chronic pain. Additionally, we focus on several crucial mechanisms by which microglia and astrocytes contribute to chronic pain and provide commentary on the therapeutic promise of targeting these pathways. In particular, we discuss how the inflammasome in activated microglia drives maturation and release of key pro-inflammatory cytokines, which drive pain through neuronal- and glial regulations. Moreover, we highlight several potentially-druggable hemichannels and proteases produced by reactive microglia and astrocytes in pain states and discuss how these pathways regulate distinct phases during pain pathogenesis. We also review two emerging areas in chronic pain research: 1) sexually dimorphic glial cell signaling and 2) the role of oligodendrocytes. Finally, we highlight important considerations for potential pain therapeutics targeting glial cell mediators as well as questions that remain in our conceptual understanding of glial cell activation in pain states.
Journal Article
Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway
by
Giusti, Pietro
,
Moro, Stefano
,
Lo, Rita
in
Animals
,
Anti-Inflammatory Agents - pharmacology
,
Biomedical and Life Sciences
2019
Background
Neuroinflammation is the response of the central nervous system to events that interfere with tissue homeostasis and represents a common denominator in virtually all neurological diseases. Activation of microglia, the principal immune effector cells of the brain, contributes to neuronal injury by release of neurotoxic products. Toll-like receptor 4 (TLR4), expressed on the surface of microglia, plays an important role in mediating lipopolysaccharide (LPS)-induced microglia activation and inflammatory responses. We have previously shown that curcumin and some of its analogues harboring an α,β-unsaturated 1,3-diketone moiety, able to coordinate the magnesium ion, can interfere with LPS-mediated TLR4–myeloid differentiation protein-2 (MD-2) signaling. Fluoroquinolone (FQ) antibiotics are compounds that contain a keto-carbonyl group that binds divalent ions, including magnesium. In addition to their antimicrobial activity, FQs are endowed with immunomodulatory properties, but the mechanism underlying their anti-inflammatory activity remains to be defined. The aim of the current study was to elucidate the molecular mechanism of these compounds in the TLR4/NF-κB inflammatory signaling pathway.
Methods
The putative binding mode of five FQs [ciprofloxacin (CPFX), levofloxacin (LVFX), moxifloxacin, ofloxacin, and delafloxacin] to TLR4–MD-2 was determined using molecular docking simulations. The effect of CPFX and LVFX on LPS-induced release of IL-1β and TNF-α and NF-κB activation was investigated in primary microglia by ELISA and fluorescence staining. The interaction of CPFX and LVFX with TLR4–MD-2 complex was assessed by immunoprecipitation followed by Western blotting using Ba/F3 cells.
Results
CPFX and LVFX bound to the hydrophobic region of the MD-2 pocket and inhibited LPS-induced secretion of pro-inflammatory cytokines and activation of NF-κB in primary microglia. Furthermore, these FQs diminished the binding of LPS to TLR4–MD-2 complex and decreased the resulting TLR4–MD-2 dimerization in Ba/F3 cells.
Conclusions
These results provide new insight into the mechanism of the anti-inflammatory activity of CPFX and LVFX, which involves, at least in part, the activation of TLR4/NF-κB signaling pathway. Our findings might facilitate the development of new molecules directed at the TLR4–MD-2 complex, a potential key target for controlling neuroinflammation.
Journal Article