Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,850 result(s) for "Nitrate Reductase - metabolism"
Sort by:
Heme biosynthesis is coupled to electron transport chains for energy generation
Cellular energy generation uses membrane-localized electron transfer chains for ATP synthesis. Formed ATP in turn is consumed for the biosynthesis of cellular building blocks. In contrast, heme cofactor biosynthesis was found driving ATP generation via electron transport after initial ATP consumption. The FMN enzyme protoporphyrinogen IX oxidase (HemG) of Escherichia coli abstracts six electrons from its substrate and transfers them via ubiquinone, cytochrome bo₃ (Cyo) and cytochrome bd (Cyd) oxidase to oxygen. Under anaerobic conditions electrons are transferred via menaquinone, fumarate (Frd) and nitrate reductase (Nar). Cyo, Cyd and Nar contribute to the proton motive force that drives ATP formation. Four electron transport chains from HemG via diverse quinones to Cyo, Cyd, Nar, and Frd were reconstituted in vitro from purified components. Characterization of E. coli mutants deficient in nar, frd, cyo, cyd provided in vivo evidence for a detailed model of heme biosynthesis coupled energy generation.
Metabolome and molecular basis for carbohydrate increase and nitrate reduction in burley tobacco seedlings by glycerol through upregulating carbon and nitrogen metabolism
Burley tobacco ( Nicotiana Tabacum ) is a chlorophyll-deficiency mutant. Nitrate is one precursor of tobacco-specific nitrosamines (TSNAs) and is largely accumulated in burley tobacco. To decrease nitrate accumulation in burley tobacco, glycerol, a polyhydric alcohol compound and physiological regulating material, was sprayed and its effects were investigated based on metabolomic technology and molecular biology. The results showed that glucose, glutamine and glutamic acid increased by 2.6, 5.1 and 196, folds, respectively, in tobacco leaves after glycerol application. Nitrate content was significantly decreased by 12–16% and expression of eight genes responsible for carbon and nitrogen metabolism were up-regulated with glycerol applications under both normal and 20% reduced nitrogen levels ( P  < 0.01). Leaf biomass of plants sprayed with glycerol and 20% nitrogen reduction was equivalent to that of no glycerol control with normal nitrogen application. Carbohydrates biosynthesis, nitrate transport and nitrate assimilation were enhanced in glycerol sprayed burley tobacco seedlings which might contribute to reduced nitrate and increased carbohydrates contents. In conclusion, glyerol spray coupled with 20% nitrogen reduction would be an effective method to reduce nitrate accumulation in burley tobacco.
The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency
The indica and japonica rice ( Oryza sativa ) subspecies differ in nitrate (NO 3 − ) assimilation capacity and nitrogen (N) use efficiency (NUE). Here, we show that a major component of this difference is conferred by allelic variation at OsNR2 , a gene encoding a NADH/NADPH-dependent NO 3 − reductase (NR). Selection-driven allelic divergence has resulted in variant indica and japonica OsNR2 alleles encoding structurally distinct OsNR2 proteins, with indica OsNR2 exhibiting greater NR activity. Indica OsNR2 also promotes NO 3 − uptake via feed-forward interaction with OsNRT1.1B , a gene encoding a NO 3 − uptake transporter. These properties enable indica OsNR2 to confer increased effective tiller number, grain yield and NUE on japonica rice, effects enhanced by interaction with an additionally introgressed indica OsNRT1.1B allele. In consequence, indica OsNR2 provides an important breeding resource for the sustainable increases in japonica rice yields necessary for future global food security. Indica rice has higher nitrate assimilation and nitrogen use efficiency (NUE) than japonica rice, but the mechanism is unclear. Here, the authors reveal that the difference is partly due to allelic variation of a nitrate reductase encoding gene and this indica allele can increase yield potential and NUE.
Linking phytoplankton community composition to seasonal changes in f-ratio
Seasonal changes in nitrogen assimilation have been studied in the western English Channel by sampling at approximately weekly intervals for 12 months. Nitrate concentrations showed strong seasonal variations. Available nitrogen in the winter was dominated by nitrate but this was close to limit of detection from May to September, after the spring phytoplankton bloom. The 15 N uptake experiments showed that nitrate was the nitrogen source for the spring phytoplankton bloom but regenerated nitrogen supported phytoplankton productivity throughout the summer. The average annual f -ratio was 0.35, which demonstrated the importance of ammonia regeneration in this dynamic temperate region. Nitrogen uptake rate measurements were related to the phytoplankton responsible by assessing the relative abundance of nitrate reductase ( NR ) genes and the expression of NR among eukaryotic phytoplankton. Strong signals were detected from NR sequences that are not associated with known phylotypes or cultures. NR sequences from the diatom Phaeodactylum tricornutum were highly represented in gene abundance and expression, and were significantly correlated with f -ratio. The results demonstrate that analysis of functional genes provides additional information, and may be able to give better indications of which phytoplankton species are responsible for the observed seasonal changes in f -ratio than microscopic phytoplankton identification.
Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment
To gain a better insight into the selenium nanoparticle (nSe) benefits/toxicity, this experiment was carried out to address the behavior of bitter melon seedlings to nSe (0, 1, 4, 10, 30, and 50 mgL-1) or bulk form (selenate). Low doses of nSe increased biomass accumulation, while concentrations of 10 mgL-1 and above were associated with stem bending, impaired root meristem, and severe toxicity. Responses to nSe were distinct from that of bulk in that the nano-type exhibited a higher efficiency to stimulate growth and organogenesis than the bulk. The bulk form displayed higher phytotoxicity than the nano-type counterpart. According to the MSAP-based analysis, nSe mediated substantial variation in DNA cytosine methylation, reflecting the epigenetic modification. By increasing the concentration of nSe, the expression of the WRKY1 transcription factor linearly up-regulated (mean = 7.9-fold). Transcriptions of phenylalanine ammonia-lyase (PAL) and 4-Coumarate: CoA-ligase (4CL) genes were also induced. The nSe treatments at low concentrations enhanced the activity of leaf nitrate reductase (mean = 52%) in contrast with the treatment at toxic concentrations. The toxic concentration of nSe increased leaf proline concentration by 80%. The nSe supplement also stimulated the activities of peroxidase (mean = 35%) and catalase (mean = 10%) enzymes. The nSe-treated seedlings exhibited higher PAL activity (mean = 39%) and soluble phenols (mean = 50%). The nSe toxicity was associated with a disrupted differentiation of xylem conducting tissue. The callus formation and performance of the explants originated from the nSe-treated seedlings had a different trend than that of the control. This experiment provides new insights into the nSe-associated advantage/ cytotoxicity and further highlights the necessity of designing convincing studies to introduce novel methods for plant cell/tissue cultures and agriculture.
effect of nitrate assimilation deficiency on the carbon and nitrogen status of Arabidopsis thaliana plants
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C–N status in roots and developing flowers.
Interacting TCP and NLP transcription factors control plant responses to nitrate availability
Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1, and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G₂/M cell-cycle marker gene, CYCB1;1. TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.
Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress
Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum . Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40–50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. Significance When starved for nutrients, diatoms redirect carbon toward biosynthesis of storage lipids, triacylglycerols (TAGs). We examined how this modification is achieved in the diatom Phaeodactylum tricornutum. Under nitrogen stress, the cells cannibalized their photosynthetic apparatus while recycling intracellular nitrogen and redirecting it to synthesize nitrogen assimilation enzymes. Simultaneously, they allocated newly fixed carbon toward lipids. In contrast, a nitrate reductase knocked-down strain shunted ∼40% more carbon toward TAGs than the wild type without losing photosynthetic capacity. Our results show that diatoms can remodel their intermediate metabolism on environmental cues and reveal that a key signal in this remodeling is associated with nitrogen assimilation. This insight informs a strategy of developing a much more efficient pathway to produce algal-based biofuels.
Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat
This study aims to clarify the effects of different concentrations of sodium chloride on the carbon and nitrogen metabolism and yield of Tartary buckwheat. The salt-sensitive cultivar Yunqiao 2 was pot-grown and treated with four salt concentrations including 0, 2, 4, and 6 g kg −1 . The root morphology index increased from seedling stage to maturate stage. The content of soluble protein in the leaves reached the maximum at the anthesis stage, and the other substances content and the enzymes activity related to carbon and nitrogen metabolism reached the maximum at the grain filling stage. The root morphology index, root activity; invertase, amylase, sucrose synthase, and sucrose phosphate synthase activities; nitrate-nitrogen, ammonium nitrogen, and soluble protein content; and nitrate reductase and glutamate synthase activities increased first and reached the maximum at 2 g kg −1 treatment and then decreased with increasing salt stress concentration. The content of soluble sugars and sucrose and the activity of glutamate dehydrogenase increased continuously with increasing salt concentration, and reached the maximum in the 6 g kg −1 treatment. The grain number per plant, 100-grain weight, and yield per plant increased first and reached the maximum at 2 g kg −1 treatment and then decreased with increasing salt stress concentration. In summary, moderate salt stress (2 g kg −1 ) can promote the root growth, increase the content of carbon and nitrogen metabolism-related substances and enzyme activity, and increase the yield per plant of Tartary buckwheat.
Molybdenum-Induced Effects on Nitrogen Metabolism Enzymes and Elemental Profile of Winter Wheat (Triticum aestivum L.) Under Different Nitrogen Sources
Different nitrogen (N) sources have been reported to significantly affect the activities and expressions of N metabolism enzymes and mineral elements concentrations in crop plants. However, molybdenum-induced effects in winter wheat cultivars have still not been investigated under different N sources. Here, a hydroponic study was carried out to investigate these effects on two winter wheat cultivars (‘97003’ and ‘97014’) as Mo-efficient and Mo-inefficient, respectively, under different N sources (NO3−, NH4NO3, and NH4+). The results revealed that the activities of nitrate reductase (NR) and nitrite reductase (NiR) followed the order of NH4NO3 > NO3− > NH4+ sources, while glutamine synthetase (GS) and glutamate synthase (GOGAT) followed the order of NH4+ > NH4NO3 > NO3− in both the wheat cultivars. However, Mo-induced effects in the activities and expressions of N metabolism enzymes under different N sources followed the order of NH4NO3 > NO3− > NH4+ sources, indicating that Mo has more complementary effects towards nitrate nutrition than the sole ammonium source in winter wheat. Interestingly, under −Mo-deprived conditions, cultivar ‘97003’ recorded more pronounced alterations in Mo-dependent parameters than ‘97014’ cultivar. Moreover, Mo application increased the proteins, amino acids, ammonium, and nitrite contents while concomitantly decreasing the nitrate contents in the same order of NH4NO3 > NO3− > NH4+ sources that coincides with the Mo-induced N enzymes activities and expressions. The findings of the present study indicated that Mo plays a key role in regulating the N metabolism enzymes and assimilatory products under all the three N sources; however, the extent of complementation exists in the order of NH4NO3 > NO3− > NH4+ sources in winter wheat. In addition, it was revealed that mineral elements profiles were mainly affected by different N sources, while Mo application generally had no significant effects on the mineral elements contents in the winter wheat leaves under different N sources.