Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
33,166 result(s) for "Nucleic Acid Chemistry"
Sort by:
Continuously tunable nucleic acid hybridization probes
Multiplexed hybridization probes are traditionally difficult to design with high sensitivity and specificity. Here Wu et al . present a method for fine, decoupled and on-the-fly tuning of probe behavior based on the stoichiometric formulation of a molecular competitor species. In silico –designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0–100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.
Nitrogen heterocycles form peptide nucleic acid precursors in complex prebiotic mixtures
The ability to store information is believed to have been crucial for the origin and evolution of life; however, little is known about the genetic polymers relevant to abiogenesis. Nitrogen heterocycles (N-heterocycles) are plausible components of such polymers as they may have been readily available on early Earth and are the means by which the extant genetic macromolecules RNA and DNA store information. Here, we report the reactivity of numerous N-heterocycles in highly complex mixtures, which were generated using a Miller-Urey spark discharge apparatus with either a reducing or neutral atmosphere, to investigate how N-heterocycles are modified under plausible prebiotic conditions. High throughput mass spectrometry was used to identify N-heterocycle adducts. Additionally, tandem mass spectrometry and nuclear magnetic resonance spectroscopy were used to elucidate reaction pathways for select reactions. Remarkably, we found that the majority of N-heterocycles, including the canonical nucleobases, gain short carbonyl side chains in our complex mixtures via a Strecker-like synthesis or Michael addition. These types of N-heterocycle adducts are subunits of the proposed RNA precursor, peptide nucleic acids (PNAs). The ease with which these carbonylated heterocycles form under both reducing and neutral atmospheres is suggestive that PNAs could be prebiotically feasible on early Earth.
Supramolecular Architectures of Nucleic Acid/Peptide Hybrids
Supramolecular architectures that are built artificially from biomolecules, such as nucleic acids or peptides, with structural hierarchical orders ranging from the molecular to nano-scales have attracted increased attention in molecular science research fields. The engineering of nanostructures with such biomolecule-based supramolecular architectures could offer an opportunity for the development of biocompatible supramolecular (nano)materials. In this review, we highlighted a variety of supramolecular architectures that were assembled from both nucleic acids and peptides through the non-covalent interactions between them or the covalently conjugated molecular hybrids between them.
Principles of nucleic acid structure
This unique and practical resource provides the most complete and concise summary of underlying principles and approaches to studying nucleic acid structure, including discussion of x-ray crystallography, NMR, molecular modelling, and databases. Its focus is on a survey of structures especially important for biomedical research and pharmacological applications. To aid novices, the book includes an introduction to technical lingo used to describe nucleic acid structure and conformations (roll, slide, twist, buckle, etc.). This completely updated edition features expanded coverage of the latest advances relevant to recognition of DNA and RNA by small molecules and proteins. In particular, the reader will find extensive new discussions on: RNA folding, ribosome structure and antibiotic interactions, DNA quadruplexes, DNA and RNA protein complexes, and short interfering RNA (siRNA). This handy guide ends with a complete list of resources, including relevant online databases and software. * Completely updated with expanded discussion of topics such as RNA folding, ribosome structure and antibiotic interactions, DNA quadruplexes, DNA and RNA protein complexes, and short interfering RNA (siRNA)* Includes a complete list of resources, including relevant online databases and software* Defines technical lingo for novices
Mutational monitoring of EGFR T790M in cfDNA for clinical outcome prediction in EGFR-mutant lung adenocarcinoma
Several ultra-sensitive methods for T790M in plasma cell-free DNA (cfDNA) have been developed for lung cancer. The correlation between mutation-allele frequency (MAF) cut-off, drug responsiveness, and outcome prediction is an unmet needs and not fully addressed. An innovative combination of peptide nucleic acid (PNA) and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) was used to proof of concept for monitoring cfDNA T790M in EGFR-mutant patients. Mutant enrichment by PNA was optimized and the detection limit was evaluated through serial dilutions. The cut-off value was identified by receiver-operating-characteristic (ROC) curve analysis utilizing serial sampled plasmas of patients from EGFR-tyrosine kinase inhibitor (TKI) pretreatment to progressive-disease (PD). Results, comparisons, and objective response rate (ORR) were analyzed in 103 patients' tumor and cfDNA T790M, with 20 of them receiving an additional COBAS test. The detection limit was 0.1% MAF. The cut-off for PD and imminent PD was 15% and 5% with an ROC area under the curve (AUC) of 0.96 and 0.82 in 2 ml plasma. Detection sensitivity of cfDNA T790M was 67.4% and overall concordance was 78.6%. ORR was similar in T790M-positive cfDNA (69.6%) and tumor samples (70.6%) treated with osimertinib. Among 65 T790M-positive tumors, 15 were negative in cfDNA (23.1%). Seven of 38 T790M-positive cfDNA samples were negative in the tumors (18.4%). PNA-MALDI-TOF MS had a higher detection rate than COBAS. In conclusion, identification of T790M cut-off value in cfDNA improves cancer managements. We provide a strategy for optimizing testing utility, flexibility, quality, and cost in the clinical practice.
γ sulphate PNA (PNA S): Highly Selective DNA Binding Molecule Showing Promising Antigene Activity
Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.
Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino
Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry.
An optimized rapid bisulfite conversion method with high recovery of cell-free DNA
Background Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. Results We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. Conclusions The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.
Single-stranded heteroduplex intermediates in λ Red homologous recombination
Background The Red proteins of lambda phage mediate probably the simplest and most efficient homologous recombination reactions yet described. However the mechanism of dsDNA recombination remains undefined. Results Here we show that the Red proteins can act via full length single stranded intermediates to establish single stranded heteroduplexes at the replication fork. We created asymmetrically digestible dsDNA substrates by exploiting the fact that Redα exonuclease activity requires a 5' phosphorylated end, or is blocked by phosphothioates. Using these substrates, we found that the most efficient configuration for dsDNA recombination occurred when the strand that can prime Okazaki-like synthesis contained both homology regions on the same ssDNA molecule. Furthermore, we show that Red recombination requires replication of the target molecule. Conclusions Hence we propose a new model for dsDNA recombination, termed 'beta' recombination, based on the formation of ssDNA heteroduplexes at the replication fork. Implications of the model were tested using (i) an in situ assay for recombination, which showed that recombination generated mixed wild type and recombinant colonies; and (ii) the predicted asymmetries of the homology arms, which showed that recombination is more sensitive to non-homologies attached to 5' than 3' ends. Whereas beta recombination can generate deletions in target BACs of at least 50 kb at about the same efficiency as small deletions, the converse event of insertion is very sensitive to increasing size. Insertions up to 3 kb are most efficiently achieved using beta recombination, however at greater sizes, an alternative Red-mediated mechanism(s) appears to be equally efficient. These findings define a new intermediate in homologous recombination, which also has practical implications for recombineering with the Red proteins.
Physical shearing imparts biological activity to DNA and ability to transmit itself horizontally across species and kingdom boundaries
Background We have recently reported that cell-free DNA (cfDNA) fragments derived from dying cells that circulate in blood are biologically active molecules and can readily enter into healthy cells to activate DNA damage and apoptotic responses in the recipients. However, DNA is not conventionally known to spontaneously enter into cells or to have any intrinsic biological activity. We hypothesized that cellular entry and acquisition of biological properties are functions of the size of DNA. Results To test this hypothesis, we generated small DNA fragments by sonicating high molecular weight DNA (HMW DNA) to mimic circulating cfDNA. Sonication of HMW DNA isolated from cancerous and non-cancerous human cells, bacteria and plant generated fragments 300–3000 bp in size which are similar to that reported for circulating cfDNA. We show here that while HMW DNAs were incapable of entering into cells, sonicated DNA (sDNA) from different sources could do so indiscriminately without heed to species or kingdom boundaries. Thus, sDNA from human cells and those from bacteria and plant could enter into nuclei of mouse cells and sDNA from human, bacterial and plant sources could spontaneously enter into bacteria. The intracellular sDNA associated themselves with host cell chromosomes and integrated into their genomes. Furthermore, sDNA, but not HMW DNA, from all four sources could phosphorylate H2AX and activate the pro-inflammatory transcription factor NFκB in mouse cells, indicating that sDNAs had acquired biological activities. Conclusions Our results show that small fragments of DNA from different sources can indiscriminately enter into other cells across species and kingdom boundaries to integrate into their genomes and activate biological processes. This raises the possibility that fragmented DNA that are generated following organismal cell-death may have evolutionary implications by acting as mobile genetic elements that are involved in horizontal gene transfer.