Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,794 result(s) for "Osteoblasts"
Sort by:
Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2
Runx2 is essential for osteoblast differentiation and chondrocyte maturation. During osteoblast differentiation, Runx2 is weakly expressed in uncommitted mesenchymal cells, and its expression is upregulated in preosteoblasts, reaches the maximal level in immature osteoblasts, and is down-regulated in mature osteoblasts. Runx2 enhances the proliferation of osteoblast progenitors by directly regulating Fgfr2 and Fgfr3. Runx2 enhances the proliferation of suture mesenchymal cells and induces their commitment into osteoblast lineage cells through the direct regulation of hedgehog (Ihh, Gli1, and Ptch1), Fgf (Fgfr2 and Fgfr3), Wnt (Tcf7, Wnt10b, and Wnt1), and Pthlh (Pthr1) signaling pathway genes, and Dlx5. Runx2 heterozygous mutation causes open fontanelle and sutures because more than half of the Runx2 gene dosage is required for the induction of these genes in suture mesenchymal cells. Runx2 regulates the proliferation of osteoblast progenitors and their differentiation into osteoblasts via reciprocal regulation with hedgehog, Fgf, Wnt, and Pthlh signaling molecules, and transcription factors, including Dlx5 and Sp7. Runx2 induces the expression of major bone matrix protein genes, including Col1a1, Spp1, Ibsp, Bglap2, and Fn1, in vitro. However, the functions of Runx2 in differentiated osteoblasts in the expression of these genes in vivo require further investigation.
Regulation of Osteoblast Differentiation by Cytokine Networks
Osteoblasts, which are bone-forming cells, play pivotal roles in bone modeling and remodeling. Osteoblast differentiation, also known as osteoblastogenesis, is orchestrated by transcription factors, such as runt-related transcription factor 1/2, osterix, activating transcription factor 4, special AT-rich sequence-binding protein 2 and activator protein-1. Osteoblastogenesis is regulated by a network of cytokines under physiological and pathophysiological conditions. Osteoblastogenic cytokines, such as interleukin-10 (IL-10), IL-11, IL-18, interferon-γ (IFN-γ), cardiotrophin-1 and oncostatin M, promote osteoblastogenesis, whereas anti-osteoblastogenic cytokines, such as tumor necrosis factor-α (TNF-α), TNF-β, IL-1α, IL-4, IL-7, IL-12, IL-13, IL-23, IFN-α, IFN-β, leukemia inhibitory factor, cardiotrophin-like cytokine, and ciliary neurotrophic factor, downregulate osteoblastogenesis. Although there are gaps in the body of knowledge regarding the interplay of cytokine networks in osteoblastogenesis, cytokines appear to be potential therapeutic targets in bone-related diseases. Thus, in this study, we review and discuss our osteoblast, osteoblast differentiation, osteoblastogenesis, cytokines, signaling pathway of cytokine networks in osteoblastogenesis.
Oxidative stress induced pyroptosis leads to osteogenic dysfunction of MG63 cells
Periodontitis is characterized by alveolar bone destruction and is one of the most common chronic oral diseases. Inflammatory cytokines released by pyroptosis, which can be triggered by oxidative stress, are critical in the development of periodontitis. This study aims to clarify whether oxidative stress causes osteoblast dysfunction by inducing pyroptosis in the process of periodontitis. We found that treatment with lipopolysaccharide (LPS) led to NLRP3 inflammasome-mediated pyroptosis of MG63 cells as well as decreased cell migration. Of note, LPS stimulation increased LDH release in a time- and dose-dependent manner. However, inhibition of reactive oxygen species with N-acetyl-L-cysteine attenuated oxidative stress-mediated pyroptosis and improved migration injury in osteoblasts treated with LPS. Further, inhibition of the NLRP3 inflammasome with MCC950 improved osteoblast migration and restored the expression of osteogenic differentiation-related proteins such as COL 1, RUNX 2 and ALP. In conclusion, oxidative stress caused by LPS induces pyroptosis in osteoblasts, leading to osteogenic dysfunction.
The Role and Mechanism of SIRT1 in Resveratrol-regulated Osteoblast Autophagy in Osteoporosis Rats
Osteoporosis is widely regarded as one of the typical aging-related diseases due to the impairment of bone remodeling. The silent information regulator of transcription1 (SIRT1) is a vital regulator of cell survival and life-span. SIRT1 has been shown to be activated by resveratrol treatment, and also has been proved to prevent aging-related diseases such as osteoporosis. However, the role of SIRT1 about autophagy or mitophagy of osteoblasts in resveratrol-regulated osteoporotic rats remains unclear. This study seeks to investigate the role of SIRT1 about autophagy or mitophagy in osteoblasts through PI3K/Akt signaling pathway in resveratrol-regulated osteoporotic rats. The vivo experiment results have revealed that resveratrol treatment significantly improved bone quality and reduced the levels of serum alkaline phosphatase and osteocalcin in osteoporotic rats. Moreover, Western bolt analysis showed that expression of SIRT1, LC3, and Beclin-1 in osteoblasts increased, while p -AKT and p -mTOR were downregulated in osteoporosis rats with high dose resveratrol treatment. On the other hand, resveratrol treatment increased the SIRT1 activity, LC3 and Beclin-1 mRNA expression in the dexamethasone (DEX)-treated osteoblasts. More mitophagosomes were observed in the DEX-treated osteoblasts with resveratrol. Meanwhile, the TOM20, Hsp60, p -Akt and p -mTOR activities were decreased in the DEX-treated osteoblasts with resveratrol. Resveratrol treatment did not change the p -p38 and p -JNK activities in the osteoblasts. These results revealed that resveratrol treatment protected osteoblasts in osteoporosis rats by enhancing mitophagy by mediating SIRT1 and PI3K/AKT/mTOR signaling pathway.
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ
The endocrine hormone fibroblast growth factor 21 (FGF21) is a powerful modulator of glucose and lipid metabolism and a promising drug for type 2 diabetes. Here we identify FGF21 as a potent regulator of skeletal homeostasis. Both genetic and pharmacologic FGF21 gain of function lead to a striking decrease in bone mass. In contrast, FGF21 loss of function leads to a reciprocal high-bone-mass phenotype. Mechanistically, FGF21 inhibits osteoblastogenesis and stimulates adipogenesis from bone marrow mesenchymal stem cells by potentiating the activity of peroxisome proliferator-activated receptor γ (PPAR-γ). Consequently, FGF21 deletion prevents the deleterious bone loss side effect of the PPAR-γ agonist rosiglitazone. Therefore, FGF21 is a critical rheostat for bone turnover and a key integrator of bone and energy metabolism. These results reveal that skeletal fragility may be an undesirable consequence of chronic FGF21 administration.
Wnt signaling and cellular metabolism in osteoblasts
The adult human skeleton is a multifunctional organ undergoing continuous remodeling. Homeostasis of bone mass in a healthy adult requires an exquisite balance between bone resorption by osteoclasts and bone formation by osteoblasts; disturbance of such balance is the root cause for various bone disorders including osteoporosis. To develop effective and safe therapeutics to modulate bone formation, it is essential to elucidate the molecular mechanisms governing osteoblast differentiation and activity. Due to their specialized function in collagen synthesis and secretion, osteoblasts are expected to consume large amounts of nutrients. However, studies of bioenergetics and building blocks in osteoblasts have been lagging behind those of growth factors and transcription factors. Genetic studies in both humans and mice over the past 15 years have established Wnt signaling as a critical mechanism for stimulating osteoblast differentiation and activity. Importantly, recent studies have uncovered that Wnt signaling directly reprograms cellular metabolism by stimulating aerobic glycolysis, glutamine catabolism as well as fatty acid oxidation in osteoblast-lineage cells. Such findings therefore reveal an important regulatory axis between bone anabolic signals and cellular bioenergetics. A comprehensive understanding of osteoblast metabolism and its regulation is likely to reveal molecular targets for novel bone therapies.
role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation
Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.
Cell Death in Chondrocytes, Osteoblasts, and Osteocytes
Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced.
Staphylococcus aureus vs. Osteoblast: Relationship and Consequences in Osteomyelitis
Bone cells, namely osteoblasts and osteoclasts work in concert and are responsible for bone extracellular matrix formation and resorption. This homeostasis is, in part, altered during infections by Staphylococcus aureus through the induction of various responses from the osteoblasts. This includes the over-production of chemokines, cytokines and growth factors, thus suggesting a role for these cells in both innate and adaptive immunity. S. aureus decreases the activity and viability of osteoblasts, by induction of apoptosis-dependent and independent mechanisms. The tight relationship between osteoclasts and osteoblasts is also modulated by S. aureus infection. The present review provides a survey of the relevant literature discussing the important aspects of S. aureus and osteoblast interaction as well as the ability for antimicrobial peptides to kill intra-osteoblastic S. aureus, hence emphasizing the necessity for new anti-infectious therapeutics.