Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7
result(s) for
"Partially methylated domains"
Sort by:
A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains
by
Lengauer, Thomas
,
Kattler, Kathrin
,
Ebert, Peter
in
Animal Genetics and Genomics
,
Animals
,
Bioinformatics
2018
Background
Partially methylated domains are extended regions in the genome exhibiting a reduced average DNA methylation level. They cover gene-poor and transcriptionally inactive regions and tend to be heterochromatic. We present a comprehensive comparative analysis of partially methylated domains in human and mouse cells, to identify structural and functional features associated with them.
Results
Partially methylated domains are present in up to 75% of the genome in human and mouse cells irrespective of their tissue or cell origin. Each cell type has a distinct set of partially methylated domains, and genes expressed in such domains show a strong cell type effect. The methylation level varies between cell types with a more pronounced effect in differentiating and replicating cells. The lowest level of methylation is observed in highly proliferating and immortal cancer cell lines. A decrease of DNA methylation within partially methylated domains tends to be linked to an increase in heterochromatic histone marks and a decrease of gene expression. Characteristic combinations of heterochromatic signatures in partially methylated domains are linked to domains of early and middle S-phase and late S-G2 phases of DNA replication.
Conclusions
Partially methylated domains are prominent signatures of long-range epigenomic organization. Integrative analysis identifies them as important general, lineage- and cell type-specific topological features. Changes in partially methylated domains are hallmarks of cell differentiation, with decreased methylation levels and increased heterochromatic marks being linked to enhanced cell proliferation. In combination with broad histone marks, partially methylated domains demarcate distinct domains of late DNA replication.
Journal Article
Comprehensive analyses of partially methylated domains and differentially methylated regions in esophageal cancer reveal both cell-type- and cancer-specific epigenetic regulation
by
Zheng, Yueyuan
,
Li, En-Min
,
Lin, De-Chen
in
Adenocarcinoma
,
Adenocarcinoma - genetics
,
Animal Genetics and Genomics
2023
Background
As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging.
Results
We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types.
Conclusions
These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.
Journal Article
Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns
2020
Background
Efforts to improve animal health, and understand genetic bases for production, may benefit from a comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown. Here, we present the largest collection of cattle DNA methylation epigenomic data to date.
Results
Using Holstein cattle, we generated 29 whole genome bisulfite sequencing (WGBS) datasets for 16 tissues, 47 corresponding RNA-seq datasets, and 2 whole genome sequencing datasets. We did read mapping and DNA methylation calling based on two different cattle assemblies, demonstrating the high quality of the long-read-based assembly markedly improved DNA methylation results. We observed large differences across cattle tissues in the methylation patterns of global CpG sites, partially methylated domains (PMDs), hypomethylated regions (HMRs), CG islands (CGIs), and common repeats. We detected that each tissue had a distinct set of PMDs, which showed tissue-specific patterns. Similar to human PMD, cattle PMDs were often linked to a general decrease of gene expression and a decrease in active histone marks and related to long-range chromatin organizations, like topologically associated domains (TADs). We tested a classification of the HMRs based on their distributions relative to transcription start sites (TSSs) and detected tissue-specific TSS-HMRs and genes that showed strong tissue effects. When performing cross-species comparisons of paired genes (two opposite strand genes with their TSS located in the same HMR), we found out they were more consistently co-expressed among human, mouse, sheep, goat, yak, pig, and chicken, but showed lower consistent ratios in more divergent species. We further used these WGBS data to detect 50,023 experimentally supported CGIs across bovine tissues and found that they might function as a guard against C-to-T mutations for TSS-HMRs. Although common repeats were often heavily methylated, some young Bov-A2 repeats were hypomethylated in sperm and could affect the promoter structures by exposing potential transcription factor binding sites.
Conclusions
This study provides a comprehensive resource for bovine epigenomic research and enables new discoveries about DNA methylation and its role in complex traits.
Journal Article
Epigenetic dynamics of partially methylated domains in human placenta and trophoblast stem cells
by
Shirane, Kenjiro
,
Toh, Hidehiro
,
Sasaki, Hiroyuki
in
Analysis
,
Animal Genetics and Genomics
,
Biomedical and Life Sciences
2024
Background
The placenta is essential for nutrient exchange and hormone production between the mother and the developing fetus and serves as an invaluable model for epigenetic research. Most epigenetic studies of the human placenta have used whole placentas from term pregnancies and have identified the presence of partially methylated domains (PMDs). However, the origin of these domains, which are typically absent in most somatic cells, remains unclear in the placental context.
Results
Using whole-genome bisulfite sequencing and analysis of histone H3 modifications, we generated epigenetic profiles of human cytotrophoblasts during the first trimester and at term, as well as human trophoblast stem cells. Our study focused specifically on PMDs. We found that genomic regions likely to form PMDs are resistant to global DNA demethylation during trophectoderm reprogramming, and that PMDs arise through a slow methylation process within condensed chromatin near the nuclear lamina. In addition, we found significant differences in histone H3 modifications between PMDs in cytotrophoblasts and trophoblast stem cells.
Conclusions
Our findings suggest that spatiotemporal genomic features shape megabase-scale DNA methylation patterns, including PMDs, in the human placenta and highlight distinct differences in PMDs between human cytotrophoblasts and trophoblast stem cells. These findings advance our understanding of placental biology and provide a basis for further research into human development and related diseases.
Journal Article
Comprehensive analysis of H3K27me3 LOCKs under different DNA methylation contexts reveal epigenetic redistribution in tumorigenesis
by
Liang, Yuan
,
Zheng, Yueyuan
,
Jiang, Lizhen
in
Analysis
,
Animal Genetics and Genomics
,
Anopheles
2025
Background
Histone modification H3K27me3 plays a critical role in normal development and is associated with various diseases, including cancer. This modification forms large chromatin domains, known as Large Organized Chromatin Lysine Domains (LOCKs), which span several hundred kilobases.
Result
In this study, we identify and categorize H3K27me3 LOCKs in 109 normal human samples, distinguishing between long and short LOCKs. Our findings reveal that long LOCKs are predominantly associated with developmental processes, while short LOCKs are enriched in poised promoters and are most associated with low gene expression. Further analysis of LOCKs in different DNA methylation contexts shows that long LOCKs are primarily located in partially methylated domains (PMDs), particularly in short-PMDs, where they are most likely responsible for the low expressions of oncogenes. We observe that in cancer cell lines, including those from esophageal and breast cancer, long LOCKs shift from short-PMDs to intermediate-PMDs and long-PMDs. Notably, a significant subset of tumor-associated long LOCKs in intermediate- and long-PMDs exhibit reduced H3K9me3 levels, suggesting that H3K27me3 compensates for the loss of H3K9me3 in tumors. Additionally, we find that genes upregulated in tumors following the loss of short LOCKs are typically poised promoter genes in normal cells, and their transcription is regulated by the ETS1 transcription factor.
Conclusion
These results provide new insights into the role of H3K27me3 LOCKs in cancer and underscore their potential impact on epigenetic regulation and disease mechanisms.
Journal Article
Characterization of universal features of partially methylated domains across tissues and species
by
Qu, Jianghan
,
Hannon, Gregory J.
,
Smith, Andrew D.
in
Analysis
,
Animal Genetics and Genomics
,
Animals
2020
Background
Partially methylated domains (PMDs) are a hallmark of epigenomes in reproducible and specific biological contexts, including cancer cells, the placenta, and cultured cell lines. Existing methods for deciding whether PMDs exist in a sample, as well as their identification, are few, often tailored to specific biological questions, and require high coverage samples for accurate identification.
Results
In this study, we outline a set of axioms that take a step towards a functional definition for PMDs, describe an improved method for comparable PMD detection across samples with substantially differing sequencing depths, and refine the decision criteria for whether a sample contains PMDs using a data-driven approach. Applying our method to 267 methylomes from 7 species, we corroborated recent results regarding the general association between replication timing and PMD state, and report identification of several reproducibly “escapee” genes within late-replicating domains that escape the reduced expression and hypomethylation of their immediate genomic neighborhood. We also explored the discordant PMD state of orthologous genes between human and mouse, and observed a directional association of PMD state with gene expression and local gene density.
Conclusions
Our improved method makes low sequencing depth, population-level studies of PMD variation possible and our results further refine the model of PMD formation as one where sequence context and regional epigenomic features both play a role in gradual genome-wide hypomethylation.
Journal Article
Multiomics Analysis of Neuroblastoma Cells Reveals a Diversity of Malignant Transformations
by
Gibas, Povilas
,
Gordevičius, Juozas
,
Kriukienė, Edita
in
5-hydroxymethylcytosine
,
cancer biomarkers
,
Cell and Developmental Biology
2021
Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system that exhibits significant variation in the stage of differentiation and cell composition of tumors. Global loss of DNA methylation and genomic 5-hydroxymethylcytosine (5hmC) is a hallmark of human cancers. Here, we used our recently developed single-base resolution approaches, hmTOP-seq and uTOP-seq, for construction of 5hmC maps and identification of large partially methylated domains (PMDs) in different NB cell subpopulations. The 5hmC profiles revealed distinct signatures characteristic to different cell lineages and stages of malignant transformation of NB cells in a conventional and oxygen-depleted environment, which often occurs in tumors. The analysis of the cell-type-specific PMD distribution highlighted differences in global genome organization among NB cells that were ascribed to the same lineage identity by transcriptomic networks. Collectively, we demonstrated a high informativeness of the integrative epigenomic and transcriptomic research and large-scale genome structure in investigating the mechanisms that regulate cell identities and developmental stages of NB cells. Such multiomics analysis, as compared with mutational studies, open new ways for identification of novel disease-associated features which bring prognostic and therapeutic value in treating this aggressive pediatric disease.
Journal Article