Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
194,184
result(s) for
"Plant metabolism"
Sort by:
Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants
by
Sampaio, Bruno Leite
,
Da Costa, Fernando Batista
,
Edrada-Ebel, RuAngelie
in
140/131
,
639/638/169
,
704/158/670
2016
Tithonia diversifolia
is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant’s metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of
T. diversifolia
which included leaves, stems, roots and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for
T. diversifolia
and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.
Journal Article
Structure and growth of plant cell walls
2024
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.Plant cells assemble a strong yet extensible primary cell wall consisting largely of polysaccharides. Emerging models of wall growth integrate physical properties such as mechanical strength and tension with cellular processes that govern wall loosening and expansion.
Journal Article
Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots
by
Lemoine, Rémi
,
Durand, Mickaël
,
Hennion, Nils
in
Arabidopsis - genetics
,
Arabidopsis - growth & development
,
Arabidopsis - metabolism
2016
Root high plasticity is an adaptation to its changing environment. Water deficit impairs growth, leading to sugar accumulation in leaves, part of which could be available to roots via sucrose (Suc) phloem transport. Phloem loading is widely described in Arabidopsis (Arabidopsis thaliana), while unloading in roots is less understood. To gain information on leaf-to-root transport, a soil-based culture system was developed to monitor root system architecture in two dimensions. Under water deficit (50% of soil water-holding capacity), total root length was strongly reduced but the depth of root foraging and the shape of the root system were less affected, likely to improve water uptake. ¹⁴CO₂ pulse-chase experiments confirmed that water deficit enhanced carbon (C) export to the roots, as suggested by the increased root-to-shoot ratio. The transcript levels of AtSWEET11 (for sugar will eventually be exported transporter), AtSWEET12, and AtSUC2 (for Suc carrier) genes, all three involved in Suc phloem loading, were significantly up-regulated in leaves of water deficit plants, in accordance with the increase in C export from the leaves to the roots. Interestingly, the transcript levels of AtSUC2 and AtSWEET11 to AtSWEET15 were also significantly higher in stressed roots, underlying the importance of Suc apoplastic unloading in Arabidopsis roots and a putative role for these Suc transporters in Suc unloading. These data demonstrate that, during water deficit, plants respond to growth limitation by allocating relatively more C to the roots to maintain an efficient root system and that a subset of Suc transporters is potentially involved in the flux of C to and in the roots.
Journal Article
Gradual Increase of miR156 Regulates Temporal Expression Changes of Numerous Genes during Leaf Development in Rice
by
Hou, Xin
,
Xiao, Jinghua
,
Yao, Jialing
in
Arabidopsis thaliana
,
Biological and medical sciences
,
Developmental biology
2012
The highly conserved plant microRNA, miR156, is an essential regulator for plant development. In Arabidopsis (Arabidopsis ihaliana), miR156 modulates phase changing through its temporal expression in the shoot. In contrast to the gradual decrease over time in the shoot (or whole plant), we found that the miR156 level in rice (Oryza sativa) gradually increased from young leaf to old leaf after the juvenile stage. However, the miR156-targeted rice SQUAMOSA-promoter binding-like (SPL) transcription factors were either dominantly expressed in young leaves or not changed over the time of leaf growth. A comparison of the transcriptomes of early-emerged old leaves and later-emerged young leaves from wild-type and miR156 overexpression (miR156-OE) rice lines found that expression levels of 3,008 genes were affected in miR156-OE leaves. Analysis of temporal expression changes of these genes suggested that miR156 regulates gene expression in a leaf age-dependent manner, and miR156-OE attenuated the temporal changes of 2,660 genes. Interestingly, seven conserved plant microRNAs also showed temporal changes from young to old leaves, and miR156-OE also attenuated the temporal changes of six microRNAs. Consistent with global gene expression changes, miR156-OE plants resulted in dramatic changes including precocious leaf maturation and rapid leaf/tiller initiation. Our results indicate that another gradient of miR156 is present over time, a gradual increase during leaf growth, in addition to the gradual decrease during shoot growth. Gradually increased miR156 expression in the leaf might be essential for regulating the temporal expression of genes involved in leaf development.
Journal Article
The Impacts of Fluctuating Light on Crop Performance
by
Walker, Berkley J.
,
Ort, Donald R.
,
Weber, Andreas P. M.
in
Carbon - metabolism
,
Crops, Agricultural - metabolism
,
Crops, Agricultural - radiation effects
2018
Rapidly changing light conditions can reduce carbon gain and productivity in field crops because photosynthetic responses to light fluctuations are not instantaneous. Plant responses to fluctuating light occur across levels of organizational complexity from entire canopies to the biochemistry of a single reaction and across orders of magnitude of time. Although light availability and variation at the top of the canopy are largely dependent on the solar angle and degree of cloudiness, lower crop canopies rely more heavily on light in the form of sunflecks, the quantity of which depends mostly on canopy structure but also may be affected by wind. The ability of leaf photosynthesis to respond rapidly to these variations in light intensity is restricted by the relatively slow opening/closing of stomata, activation/deactivation of C₃ cycle enzymes, and up-regulation/down-regulation of photoprotective processes. The metabolic complexity of C₄ photosynthesis creates the apparently contradictory possibilities that C₄ photosynthesis may be both more and less resilient than C₃ to dynamic light regimes, depending on the frequency at which these light fluctuations occur. We review the current understanding of the underlying mechanisms of these limitations to photosynthesis in fluctuating light that have shown promise in improving the response times of photosynthesis-related processes to changes in light intensity.
Journal Article
Source and sink mechanisms of nitrogen transport and use
by
Céline Masclaux-Daubresse
,
Mechthild Tegeder
in
amino acid and ureide partitioning
,
ammonium and nitrate uptake
,
Biological Transport
2018
Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Journal Article
Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade
by
Thomashow, Michael F
,
He, Zuhua
,
Yang, Yinong
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2012
Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1–JAZ–DELLA–PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.
Journal Article
Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis
2021
Phosphorus (P) is an essential macronutrient for plant growth, development and production. However, little is known about the effects of P deficiency on nutrient absorption, photosynthetic apparatus performance and antioxidant metabolism in citrus. Seedlings of ‘sour pummelo’ (
Citrus grandis
) were irrigated with a nutrient solution containing 0.2 mM (Control) or 0 mM (P deficiency) KH
2
PO
4
until saturated every other day for 16 weeks. P deficiency significantly decreased the dry weight (DW) of leaves and stems, and increased the root/shoot ratio in
C
.
grandis
but did not affect the DW of roots. The decreased DW of leaves and stems might be induced by the decreased chlorophyll (Chl) contents and CO
2
assimilation in P deficient seedlings. P deficiency heterogeneously affected the nutrient contents of leaves, stems and roots. The analysis of Chl
a
fluorescence transients showed that P deficiency impaired electron transport from the donor side of photosystem II (PSII) to the end acceptor side of PSI, which showed a greater impact on the performance of the donor side of PSII than that of the acceptor side of PSII and photosystem I (PSI). P deficiency increased the contents of ascorbate (ASC), H
2
O
2
and malondialdehyde (MDA) as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in leaves. In contrast, P deficiency increased the ASC content, reduced the glutathione (GSH) content and the activities of SOD, CAT, APX and monodehydroascorbate reductase (MDHAR), but did not increase H
2
O
2
production, anthocyanins and MDA content in roots. Taking these results together, we conclude that P deficiency affects nutrient absorption and lowers photosynthetic performance, leading to ROS production, which might be a crucial cause of the inhibited growth of
C
.
grandis
.
Journal Article
effects of auxin and strigolactones on tuber initiation and stolon architecture in potato
by
Oortwijn, Marian
,
Kloosterman, Bjorn
,
Roumeliotis, Efstathios
in
analysis
,
antagonists & inhibitors
,
arabidopsis
2012
Various transcriptional networks and plant hormones have been implicated in controlling different aspects of potato tuber formation. Due to its broad impact on many plant developmental processes, a role for auxin in tuber initiation has been suggested but never fully resolved. Here, auxin concentrations were measured throughout the plant prior to and during the process of tuber formation. Auxin levels increase dramatically in the stolon prior to tuberization and remain relatively high during subsequent tuber growth, suggesting a promoting role for auxin in tuber formation. Furthermore, in vitro tuberization experiments showed higher levels of tuber formation from axillary buds of explants where the auxin source (stolon tip) had been removed. This phenotype could be rescued by application of auxin on the ablated stolon tips. In addition, a synthetic strigolactone analogue applied on the basal part of the stolon resulted in fewer tubers. The experiments indicate that a system for the production and directional transport of auxin exists in stolons and acts synergistically with strigolactones to control the outgrowth of the axillary stolon buds, similar to the control of above-ground shoot branching.
Journal Article
Root exudates: from plant to rhizosphere and beyond
by
Vives-Peris, Vicente
,
Gómez-Cadenas, Aurelio
,
Pérez-Clemente, Rosa María
in
Biological Transport, Active
,
Biomedical and Life Sciences
,
Biotechnology
2020
Key message
This article describes the composition of root exudates, how these metabolites are released to the rhizosphere and their importance in the recruitment of beneficial microbiota that alleviate plant stress.
Metabolites secreted to the rhizosphere by roots are involved in several processes. By modulating the composition of the root exudates, plants can modify soil properties to adapt and ensure their survival under adverse conditions. They use several strategies such as (1) changing soil pH to solubilize nutrients into assimilable forms, (2) chelating toxic compounds, (3) attracting beneficial microbiota, or (4) releasing toxic substances for pathogens, etc. In this work, the composition of root exudates as well as the different mechanisms of root exudation have been reviewed. Existing methodologies to collect root exudates, indicating their advantages and disadvantages, are also described. Factors affecting root exudation have been exposed, including physical, chemical, and biological agents which can produce qualitative and quantitative changes in exudate composition. Finally, since root exudates play an important role in the recruitment of mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR), the mechanisms of interaction between plants and the beneficial microbiota have been highlighted.
Journal Article