Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,256
result(s) for
"Polypyrroles"
Sort by:
Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon
by
Al-Kahtani, Abdullah
,
Alghamdi, Abdulaziz Ali
,
Al-Odayni, Abdel-Basit
in
Activated carbon
,
Adsorbents
,
Adsorption
2019
In this study, polypyrrole-based activated carbon was prepared by the carbonization of polypyrrole at 650 °C for 2 h in the presence of four-times the mass of KOH as a chemical activator. The structural and morphological properties of the product (polypyrrole-based activated carbon (PPyAC4)), analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis, support its applicability as an adsorbent. The adsorption characteristics of PPyAC4 were examined through the adsorption of lead ions from aqueous solutions. The influence of various factors, including initial ion concentration, pH, contact time, and adsorbent dose, on the adsorption of Pb2+ was investigated to identify the optimum adsorption conditions. The experimental data fit well to the pseudo-second-order kinetic model (R2 = 0.9997) and the Freundlich isotherm equation (R2 = 0.9950), suggesting a chemisorption pathway. The adsorption capacity was found to increase with increases in time and initial concentration, while it decreased with an increase in adsorbent dose. Additionally, the highest adsorption was attained at pH 5.5. The calculated maximum capacity, qm, determined from the Langmuir model was 50 mg/g.
Journal Article
Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent
by
Abdullahi, Shehu Sa’ad
,
Ibrahim, Mohamad Nasir Mohamad
,
Jagaba, Ahmad Hussaini
in
Adsorbents
,
Adsorption
,
Ammonium peroxodisulfate
2022
In this work, a polypyrrole-polyethyleneimine (PPy-PEI) nano-adsorbent was successfully synthesized for the removal of methylene blue (MB) from an aqueous solution. Synthetic dyes are among the most prevalent environmental contaminants. A new conducting polymer-based adsorbent called (PPy-PEI) was successfully produced using ammonium persulfate as an oxidant. The PEI hyper-branched polymer with terminal amino groups was added to the PPy adsorbent to provide more effective chelating sites for dyes. An efficient dye removal from an aqueous solution was demonstrated using a batch equilibrium technique that included a polyethyleneimine nano-adsorbent (PPy-PEI). The best adsorption parameters were measured at a 0.35 g dosage of adsorbent at a pH of 6.2 and a contact period of 40 min at room temperature. The produced PPy-PEI nano-adsorbent has an average particle size of 25–60 nm and a BET surface area of 17 m2/g. The results revealed that PPy-PEI nano-composite was synthesized, and adsorption was accomplished in the minimum amount of time. The maximum monolayer power, qmax, for MB was calculated using the isothermal adsorption data, which matched the Langmuir isotherm model, and the kinetic adsorption data, which more closely fitted the Langmuir pseudo-second-order kinetic model. The Langmuir model was used to calculate the maximum monolayer capacity, or qmax, for MB, which was found to be 183.3 mg g−1. The as-prepared PPy-PEI nano-adsorbent totally removes the cationic dyes from the aqueous solution.
Journal Article
Interface-induced dual-pinning mechanism enhances low-frequency electromagnetic wave loss
2024
Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe
2
O
4
(NFO)@BiFeO
3
(BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RL
min
) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.
This paper proposes a dual-pinning mechanism induced by a magneto-electric bias interface and uses it to designs a double-layer core-shell structure, demonstrating that the mechanism improves electromagnetic wave absorption in the low-frequency bands.
Journal Article
Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material
by
Mingtao Qiao;Xingfeng Lei;Yong Ma;Lidong Tian;Xiaowei He;Kehe Su;Qiuyu Zhang
in
Absorption
,
Atomic/Molecular Structure and Spectra
,
Biomedicine
2018
Yolk-shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption-desorption isotherms indicate a Brunauer-Emmett-Teller (BET) specific surface area of 74 m^2/g and a pore width of 5-30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20wt.% yolk-shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of -63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk-shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.
Journal Article
Antibacterial evaporator based on reduced graphene oxide/polypyrrole aerogel for solar-driven desalination
2023
Solar-driven water evaporation is a sustainable method to purify seawater. Nevertheless, traditional volumetric water-evaporation systems suffer from the poor sunlight absorption and inefficient light-to-thermal conversion. Also, their anti-bacterial and anti-fouling performances are crucial for the practical application. Herein, we introduce reduced graphene oxide (RGO) with broadband absorbance across the entire solar spectrum, and polypyrrole (PPy), an antibacterial polymer with efficient solar absorption and low thermal conductivity, to develop integrated RGO/PPy aerogel as both the solar absorber and evaporator for highly efficient solar-driven steam generation. As a result, the RGO/PPy aerogel shows strong absorption and good photothermal performance, leading to an evaporation rate of 1.44 kg·m
−2
·h
−1
and high salt rejection (up to 99.99%) for real seawater, with photothermal conversion efficiency > 90% under one sun irradiation. The result is attributed to the localized heat at the air—water interface by the RGO/PPy and its porous nature with functional groups that facilitates the water evaporation. Moreover, the RGO/PPy demonstrates excellent durability and antibacterial efficiency close to 100% for 12 h, crucial characteristics for long-term application. Our well-designed RGO/PPy aerogel with efficient water desalination performance and antibacterial property provides a straightforward approach to improve the solar-driven evaporation performance by multifunctional materials integration, and offers a viable route towards practical seawater desalination.
Journal Article
Preparation and characterization of hybrid polypyrrole nanoparticles as a conducting polymer with controllable size
2024
Hybrid polypyrrole (PPy) nanoparticles were prepared using a low-temperature oxidative polymerization process in an acidic solution with polyethyleneimine (PEI) as a template and amine source. The results showed that the nanoparticles have an amorphous structure in the X-ray diffractogram and exhibited good dispersibility in water, uniform size, and a specific conductivity ranging from 0.1 to 6.9 S/cm. The particle size could be tuned from 85 to 300 nm by varying the reactant concentration. Undoping the samples with sodium hydroxide (NaOH) solution altered the optical absorption properties and surface roughness of the particles. However, it did not affect the particle size. The nanoparticles also exhibited optical sensing properties based on their UV–vis absorption changes with the pH. Moreover, nanoparticles could have potential applications in gene delivery and bio-adsorption for contaminant removal. This work demonstrates a simple and effective method for preparing hybrid polypyrrole nanoparticles with controllable size, dispersibility, and conductivity for various nanotechnology, biotechnology, and environmental engineering purposes.
Journal Article
Electrical Conductivity Based Ammonia Sensing Properties of Polypyrrole/MoS2 Nanocomposite
2020
Polypyrrole (PPy) and Polypyrrole/MoS2 (PPy/MoS2) nanocomposites were successfully prepared, characterized and studied for ammonia sensing properties. The as-prepared PPy and PPy/MoS2 nanocomposites were confirmed by FTIR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) techniques. The ammonia sensing properties of PPy and PPy/MoS2 nanocomposites were studied in terms of change in DC electrical conductivity on exposure to ammonia vapors followed by ambient air at room temperature. It was observed that the incorporation of MoS2 in PPy showed high sensitivity, significant stability and excellent reversibility. The enhanced sensing properties of PPy/MoS2 nanocomposites could be attributed to comparatively high surface area, appropriate sensing channels and efficiently available active sites. The sensing mechanism is explained on the basis of simple acid-base chemistry of polypyrrole.
Journal Article
Highly efficient solar vapour generation via hierarchically nanostructured gels
2018
Solar vapour generation is an efficient way of harvesting solar energy for the purification of polluted or saline water. However, water evaporation suffers from either inefficient utilization of solar energy or relies on complex and expensive light-concentration accessories. Here, we demonstrate a hierarchically nanostructured gel (HNG) based on polyvinyl alcohol (PVA) and polypyrrole (PPy) that serves as an independent solar vapour generator. The converted energy can be utilized in situ to power the vaporization of water contained in the molecular meshes of the PVA network, where water evaporation is facilitated by the skeleton of the hydrogel. A floating HNG sample evaporated water with a record high rate of 3.2 kg m−2 h−1 via 94% solar energy from 1 sun irradiation, and 18–23 litres of water per square metre of HNG was delivered daily when purifying brine water. These values were achievable due to the reduced latent heat of water evaporation in the molecular mesh under natural sunlight.
Journal Article
Polypyrrole Nanomaterials: Structure, Preparation and Application
by
Zhang, Lifeng
,
Hao, Lu
,
Zhu, Kaiming
in
Adsorption
,
Biocompatibility
,
Corrosion and anti-corrosives
2022
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Journal Article
Effect of Temperature on the Polymerization and Optical Conductivity of Thin Flexible Polypyrrole/Starch Composites
by
Zaidi, MGH
,
Verma, Amit
,
Prasher, Parteek
in
Composite materials
,
Energy storage
,
Polymerization
2020
Conductive PPY/Starch (PS) composites were prepared at varying temperature by insitu polymerization method. These polymerized materials were subjected to various studies viz. UV-Vis, FTIR, and XRD to study their effective interaction with each other. The impact of polymerization temperature on the optical conductivity of all the fabricated materials and individual components were studied, these studies shows the increased amount of conductive PPY in the composites leads towards higher optical conductivity of fabricated composites. The PPY/Starch composite synthesized at 0±1°C was observed to have the optical band gap of 4.9 eV and optical conductivity of ∼2.8×108 S−1 at 290 nm, which is decent for a material to be used as an optical conductive and hence the proposed material find its application in diverse field of energy storage.
Journal Article