Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
30 result(s) for "Receptor Activity-Modifying Protein 3 - metabolism"
Sort by:
RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis
Receptor-activity–modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein–coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.
Differential expression of components of the CGRP-receptor family in human coronary and human middle meningeal arteries: functional implications
Background Different responses in human coronary arteries (HCA) and human middle meningeal arteries (HMMA) were observed for some of the novel CGRP receptor antagonists, the gepants, for inhibiting CGRP-induced relaxation. These differences could be explained by the presence of different receptor populations in the two vascular beds. Here, we aim to elucidate which receptors are involved in the relaxation to calcitonin gene-related peptide (CGRP), adrenomedullin (AM) and adrenomedullin 2 (AM2) in HCA and HMMA. Methods RNA was isolated from homogenized human arteries (23 HCAs; 12 F, 11 M, age 50 ± 3 years and 26 HMMAs; 14 F, 12 M, age 51 ± 3 years) and qPCR was performed for different receptor subunits. Additionally, relaxation responses to CGRP, AM or AM2 of the human arteries were quantified using a Mulvany myograph system, in the presence or absence of the adrenomedullin 1 receptor antagonist AM 22-52 and/or olcegepant. Results Calcitonin-like receptor (CLR) mRNA was expressed equally in both vascular beds, while calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3) expression was low and could not be detected in all samples. RAMP1 expression was similar in HCA and HMMA, while RAMP2 expression was higher in HMMA. Moreover, receptor component protein (RCP) expression was higher in HMMA than in HCA. Functional experiments showed that olcegepant inhibits relaxation to all three agonists in both vascular beds. In HCA, antagonist AM 22-52 did not inhibit relaxation to any of the agonists, while a trend for blocking relaxation to AM and AM2 could be observed in HMMA. Conclusion Based on the combined results from receptor subunit mRNA expression and the functional responses in both vascular tissues, relaxation of HCA is mainly mediated via the canonical CGRP receptor (CLR-RAMP1), while relaxation of HMMA can be mediated via both the canonical CGRP receptor and the adrenomedullin 1 receptor (CLR-RAMP2). Future research should investigate whether RAMP2 predominance over RAMP1 in the meningeal vasculature results in altered migraine susceptibility or in a different response to anti-migraine medication in these patients. Moreover, the exact role of RCP in CGRP receptor signalling should be elucidated in future research.
Neuropeptide signalling orchestrates T cell differentiation
The balance between T helper type 1 (T H 1) cells and other T H cells is critical for antiviral and anti-tumour responses 1 – 3 , but how this balance is achieved remains poorly understood. Here we dissected the dynamic regulation of T H 1 cell differentiation during in vitro polarization, and during in vivo differentiation after acute viral infection. We identified regulators modulating T helper cell differentiation using a unique T H 1–T H 2 cell dichotomous culture system and systematically validated their regulatory functions through multiple in vitro and in vivo CRISPR screens. We found that RAMP3, a component of the receptor for the neuropeptide CGRP (calcitonin gene-related peptide), has a cell-intrinsic role in T H 1 cell fate determination. Extracellular CGRP signalling through the receptor RAMP3–CALCRL restricted the differentiation of T H 2 cells, but promoted T H 1 cell differentiation through the activation of downstream cAMP response element-binding protein (CREB) and activating transcription factor 3 (ATF3). ATF3 promoted T H 1 cell differentiation by inducing the expression of Stat1 , a key regulator of T H 1 cell differentiation. After viral infection, an interaction between CGRP produced by neurons and RAMP3 expressed on T cells enhanced the anti-viral IFNγ-producing T H 1 and CD8 + T cell response, and timely control of acute viral infection. Our research identifies a neuroimmune circuit in which neurons participate in T cell fate determination by producing the neuropeptide CGRP during acute viral infection, which acts on RAMP3-expressing T cells to induce an effective anti-viral T H 1 cell response. RAMP3, a component of the receptor for the neuropeptide CGRP, has a cell-intrinsic role in T helper type 1 cell fate determination.
IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo
p53 is often mutated or lost in cancer; here inactivation of ΔNp63 and ΔNp73 in the absence of p53 is shown to result in metabolic reprogramming and tumour regression via activation of IAPP (islet amyloid polypeptide or amylin), and IAPP-based anti-diabetes therapeutic strategies show potential for the treatment of p53-deficient and mutant tumours. A novel approach to targeting p53 cancers The tumour suppressor p53 is often mutated or lost in cancer. There is evidence from mouse models that reactivation of p53 activity in tumours can result in regression, but direct reactivation of normal p53 activity has not developed into an effective strategy for treating human cancer. In this paper Elsa Flores and colleagues show in mice that inactivation of the p53 family proteins p63 and p73, in the absence of p53, results in metabolic reprogramming and tumour regression through the activation of IAPP (islet amyloid polypeptide, also known as amylin). The anti-diabetic drug pramlintide, an amylin analogue, caused tumour regression in mice with p53-deficient thymic lymphomas, suggesting a novel strategy that might be used to target p53-deficient cancers. TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice 1 , 2 ( TP53 and Tp53 are also known as p53 ). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73 , respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the ΔN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions 3 , 4 , 5 , 6 , 7 , 8 . The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy 9 , 10 , 11 , 12 , 13 , 14 , thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the ΔN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53 -deficient tumours through upregulation of IAPP , the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the β cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53 -deficient thymic lymphomas, representing a novel strategy to target p53 -deficient cancers.
Facultative CTCF sites moderate mammary super-enhancer activity and regulate juxtaposed gene in non-mammary cells
Precise spatiotemporal gene regulation is paramount for the establishment and maintenance of cell-specific programmes. Although there is evidence that chromatin neighbourhoods, formed by the zinc-finger protein CTCF, can sequester enhancers and their target genes, there is limited in vivo evidence for CTCF demarcating super-enhancers and preventing cross talk between distinct regulatory elements. Here, we address these questions in the Wap locus with its mammary-specific super-enhancer separated by CTCF sites from widely expressed genes. Mutational analysis demonstrates that the Wap super-enhancer controls Ramp3 , despite three separating CTCF sites. Their deletion in mice results in elevated expression of Ramp3 in mammary tissue through augmented promoter–enhancer interactions. Deletion of the distal CTCF-binding site results in loss of Ramp3 expression in non-mammary tissues. This suggests that CTCF sites are porous borders, allowing a super-enhancer to activate a secondary target. Likewise, CTCF sites shield a widely expressed gene from suppressive influences of a silent locus. Chromatin neighbourhoods, formed by CTCF, have been proposed to isolate enhancers and their target genes from other regulatory elements. Here, the authors provide evidence that while CTCF binding does regulates mammary-specific super-enhancers, CTCF sites are relatively porous borders.
Intermedin Stabilized Endothelial Barrier Function and Attenuated Ventilator-induced Lung Injury in Mice
Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1-3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. IMD may possibly provide a new approach to attenuate VILI.
Knockdown of long non-coding RNA LEF1-AS1 attenuates apoptosis and inflammatory injury of microglia cells following spinal cord injury
Background Spinal cord injury (SCI) is associated with health burden both at personal and societal levels. Recent assessments on the role of lncRNAs in SCI regulation have matured. Therefore, to comprehensively explore the function of lncRNA LEF1-AS1 in SCI, there is an urgent need to understand its occurrence and development. Methods Using in vitro experiments, we used lipopolysaccharide (LPS) to treat and establish the SCI model primarily on microglial cells. Gain- and loss of function assays of LEF1-AS1 and miR-222-5p were conducted. Cell viability and apoptosis of microglial cells were assessed via CCK8 assay and flow cytometry, respectively. Adult Sprague-Dawley (SD) rats were randomly divided into four groups: Control, SCI, sh-NC, and sh-LEF-AS1 groups. ELISA test was used to determine the expression of TNF-α and IL-6, whereas the protein level of apoptotic-related markers (Bcl-2, Bax, and cleaved caspase-3) was assessed using Western blot technique. Results We revealed that LncRNA LEF1-AS1 was distinctly upregulated, whereas miR-222-5p was significantly downregulated in LPS-treated SCI and microglial cells. However, LEF1-AS1 knockdown enhanced cell viability, inhibited apoptosis, as well as inflammation of LPS-mediated microglial cells. On the contrary, miR-222-5p upregulation decreased cell viability, promoted apoptosis, and inflammation of microglial cells. Mechanistically, LEF1-AS1 served as a competitive endogenous RNA (ceRNA) by sponging miR-222-5p, targeting RAMP3. RAMP3 overexpression attenuated LEF1-AS1-mediated protective effects on LPS-mediated microglial cells from apoptosis and inflammation. Conclusion In summary, these findings ascertain that knockdown of LEF1-AS1 impedes SCI progression via the miR-222-5p/RAMP3 axis.
Expression and Distribution of the Adrenomedullin System in Newborn Human Thymus
Adrenomedullin (AM) is a multifunctional peptide endowed with various biological actions mediated by the interaction with the calcitonin receptor-like receptor (CLR), which couples to the receptor activity-modifying proteins 2 or 3 (RAMP2 or RAMP3) to form the functional plasma membrane receptors AM1 and AM2, respectively. In this study, we investigated for the first time the expression and localization of AM, CLR, RAMP2 and RAMP3 in human thymic tissue from newborns and in primary cultures of thymic epithelial cells (TECs) and thymocytes. Immunohistochemical analysis of thymic tissue showed that both AM and RAMP2 are abundantly expressed in the epithelial cells of medulla and cortex, blood vessels and mastocytes. In contrast, RAMP3 could not be detected. In cultured TECs, double immunofluorescence coupled to confocal microscopy revealed that AM is present in the cytoplasmic compartment, whereas RAMP2 could be detected in the cytoplasm and nucleus, but not in the cell membrane. At variance with RAMP2, CLR was not only present in the nucleus and cytoplasm of TECs, but could also be detected in the cell membrane. The nuclear and cytoplasmic localizations of RAMP2 and CLR and the absence of RAMP2 in the cell membrane were confirmed by western-blot analysis performed on cell fractions. AM, RAMP2 and CLR could also be detected in thymocytes by means of double immunofluorescence coupled to confocal microscopy, although these proteins were not present in the whole thymocyte population. In these cells, AM and RAMP2 were detected in the cytoplasm, whereas CLR could be observed in the cytoplasm and the plasma membrane. In conclusion, our results show that the AM system is widely expressed in human thymus from newborns and suggest that both AM1 receptor components CLR and RAMP2 are not associated with the plasma membrane of TECs and thymocytes but are located intracellularly, notably in the nucleus.
Temporo-spatial expression of adrenomedullin and its receptors in the bovine placenta
Background Adrenomedullin (AM) is a potent vasodilator peptide and is also involved in various physiological activities. In humans and rodents, AM is found in the uteroplacental unit and may be responsible for fetal development and maintenance of placental function. This study investigated 1) the mRNA expression patterns of AM and its receptor components (calcitonin receptor-like receptor (CRLR), receptor activity modifying protein (RAMP) 2 and RAMP3) during pregnancy and 2) mRNA and protein localization of AM, CRLR and RAMPs in the bovine placentome. Methods For real-time quantitative RT-PCR, bovine uteroplacental tissues were collected from Day 25, 60, 100, 150, 200 and 250 of gestation and separated into uterine caruncle (CAR), intercaruncular endometrium (ICAR), extra-embryonic membranes on Day 25 and cotyledonary villous after Day 60 (EEM-COT) and intercotyledonary chorion (ICOT). In situ hybridization and immunohistochemistry was performed to investigate the cellular localization of mRNA and protein of AM, CRLR, RAMP2 and RAMP3 in the placentome on Day 56, 150 and 230 of gestation and interplacentomal tissues on Day 56 of gestation. Results AM mRNA was highly expressed on Day 200 in EEM-COT, CAR and ICAR. CRLR mRNA was highly expressed on Day 60 in all portions. RAMP2 mRNA was also highly expressed on Day 60 in ICOT and ICAR. In EEM-COT, mRNA expression of CRLR and RAMP2 decreased from Day 150 to 250. RAMP3 mRNA was highly expressed on Day 150 in EEM-COT, ICOT and ICAR. A distinct AM mRNA and protein signal were only found in trophoblast binucleate cells (BNCs), whereas those of CRLR, RAMP2 and RAMP3 were detected in cotyledonary villous and caruncular epithelial cells. In interplacentomal tissues, AM was detected in BNCs of fetal membrane and a small part of luminal epithelium, endothelial lineage of blood vessels and glandular epithelium of the endometrium. Distinct signals of CRLR, RAMP2 and RAMP3 were found in trophoblast cells, luminal epithelium, stroma under the epithelium, endothelial lineage of blood vessels and glandular epithelium. Conclusions Our results indicate that the AM system in the bovine uteroplacental unit may be activated at placentation and transition from the mid to late gestation period. Locally produced AM in the BNCs may play a crucial role in regulation of placental vascular and cellular functions during pregnancy.
Effect of Valsartan on Cerebellar Adrenomedullin System Dysregulation During Hypertension
Adrenomedullin (AM) and its receptors components, calcitonin-receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP1, RAMP2, and RAMP3) are expressed in cerebellum. Cerebellar AM, AM binding sites and receptor components are altered during hypertension, suggesting a role for cerebellar AM in blood pressure regulation. Thus, we assessed the effect of valsartan, on AM and its receptor components expression in the cerebellar vermis of Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rats. Additionally, we evaluated AM action on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, and thiobarbituric acid reactive substances (TBARS) production in cerebellar vermis. Animals were treated with valsartan or vehicle for 11 days. Rats were sacrificed by decapitation; cerebellar vermis was dissected; and AM, CRLR, RAMP1, RAMP2, and RAMP3 expression was quantified by Western blot analysis. CAT, SOD, and GPx activity was determined spectrophotometrically and blood pressure by non-invasive plethysmography. We demonstrate that AM and RAMP2 expression was lower in cerebellum of SHR rats, while CRLR, RAMP1, and RAMP3 expression was higher than those of WKY rats. AM reduced cerebellar CAT, SOD, GPx activities, and TBARS production in WKY rats, but not in SHR rats. Valsartan reduced blood pressure and reversed the altered expression of AM and its receptors components, as well the loss of AM capacity to reduce antioxidant enzyme activity and TBARS production in SHR rats. These findings demonstrate that valsartan is able to reverse the dysregulation of cerebellar adrenomedullinergic system; and they suggest that altered AM system in the cerebellum could represent the primary abnormality leading to hypertension.