Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
27,615 result(s) for "SKELETAL-MUSCLE"
Sort by:
Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations
Assessment of a low skeletal muscle mass (SM) is important for diagnosis of ageing and disease-associated sarcopenia and is hindered by heterogeneous methods and terminologies that lead to differences in diagnostic criteria among studies and even among consensus definitions. The aim of this review was to analyze and summarize previously published cut-offs for SM applied in clinical and research settings and to facilitate comparison of results between studies. Multiple published reference values for discrepant parameters of SM were identified from 64 studies and the underlying methodological assumptions and limitations are compared including different concepts for normalization of SM for body size and fat mass (FM). Single computed tomography or magnetic resonance imaging images and appendicular lean soft tissue by dual X-ray absorptiometry (DXA) or bioelectrical impedance analysis (BIA) are taken as a valid substitute of total SM because they show a high correlation with results from whole body imaging in cross-sectional and longitudinal analyses. However, the random error of these methods limits the applicability of these substitutes in the assessment of individual cases and together with the systematic error limits the accurate detection of changes in SM. Adverse effects of obesity on muscle quality and function may lead to an underestimation of sarcopenia in obesity and may justify normalization of SM for FM. In conclusion, results for SM can only be compared with reference values using the same method, BIA- or DXA-device and an appropriate reference population. Limitations of proxies for total SM as well as normalization of SM for FM are important content-related issues that need to be considered in longitudinal studies, populations with obesity or older subjects.
Exercise metabolism
\"Exercise Metabolism, Second Edition, provides a systematic, in-depth examination of the regulation of metabolic processes during exercise. Exercise physiologists, exercise biochemists, and biochemists will find this book a comprehensive reference, using the up-to-date information and the nearly 1,000 references in their own research and writing. In addition, graduate students in these disciplines can learn firsthand about the various regulations of metabolic processes during exercise as they prepare for careers in exercise physiology or biochemistry\"--Jacket.
FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age
Tissue regeneration declines with ageing but little is known about whether this arises from changes in stem-cell heterogeneity. Here, in homeostatic skeletal muscle, we identify two quiescent stem-cell states distinguished by relative CD34 expression: CD34High, with stemness properties (genuine state), and CD34Low, committed to myogenic differentiation (primed state). The genuine-quiescent state is unexpectedly preserved into later life, succumbing only in extreme old age due to the acquisition of primed-state traits. Niche-derived IGF1-dependent Akt activation debilitates the genuine stem-cell state by imposing primed-state features via FoxO inhibition. Interventions to neutralize Akt and promote FoxO activity drive a primed-to-genuine state conversion, whereas FoxO inactivation deteriorates the genuine state at a young age, causing regenerative failure of muscle, as occurs in geriatric mice. These findings reveal transcriptional determinants of stem-cell heterogeneity that resist ageing more than previously anticipated and are only lost in extreme old age, with implications for the repair of geriatric muscle.García-Prat, Perdiguero, Alonso-Martín et al. show that skeletal muscle contains a subpopulation of quiescent stem cells, maintained by FoxO signalling, that is preserved into late life but declines in advanced geriatric age.
Pax7 is critical for the normal function of satellite cells in adult skeletal muscle
Extensive analyses of mice carrying null mutations in paired box 7 (Pax7) have confirmed the progressive loss of the satellite cell lineage in skeletal muscle, resulting in severe muscle atrophy and death. A recent study using floxed alleles and tamoxifen-induced inactivation concluded that after 3 wk of age, Pax7 was entirely dispensable for satellite cell function. Here, we demonstrate that Pax7 is an absolute requirement for satellite cell function in adult skeletal muscle. Following Pax7 deletion, satellite cells and myoblasts exhibit cell-cycle arrest and dysregulation of myogenic regulatory factors. Maintenance of Pax7 deletion through continuous tamoxifen administration prevented regrowth of Pax7-expressing satellite cells and a profound muscle regeneration deficit that resembles the phenotype of skeletal muscle following genetically engineered ablation of satellite cells. Therefore, we conclude that Pax7 is essential for regulating the expansion and differentiation of satellite cells during both neonatal and adult myogenesis.
Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration
Muscle satellite cells contribute to muscle regeneration. We have used a Pax3[superscript GFP/+] mouse line to directly isolate (Pax3)(green fluorescent protein)-expressing muscle satellite cells, by flow cytometry from adult skeletal muscles, as a homogeneous population of small, nongranular, Pax7+, CD34+, CD45-, Sca1- cells. The flow cytometry parameters thus established enabled us to isolate satellite cells from wild-type muscles. Such cells, grafted into muscles of mdx nu/nu mice, contributed both to fiber repair and to the muscle satellite cell compartment. Expansion of these cells in culture before engraftment reduced their regenerative capacity.
Cellular dynamics in the muscle satellite cell niche
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.
The ubiquitin–proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders
Skeletal muscle is one of the most abundant and highly plastic tissues. The ubiquitin–proteasome system (UPS) is recognised as a major intracellular protein degradation system, and its function is important for muscle homeostasis and health. Although UPS plays an essential role in protein degradation during muscle atrophy, leading to the loss of muscle mass and strength, its deficit negatively impacts muscle homeostasis and leads to the occurrence of several pathological phenotypes. A growing number of studies have linked UPS impairment not only to matured muscle fibre degeneration and weakness, but also to muscle stem cells and deficiency in regeneration. Emerging evidence suggests possible links between abnormal UPS regulation and several types of muscle diseases. Therefore, understanding of the role of UPS in skeletal muscle may provide novel therapeutic insights to counteract muscle wasting, and various muscle diseases. In this review, we focussed on the role of proteasomes in skeletal muscle and its regeneration, including a brief explanation of the structure of proteasomes. In addition, we summarised the recent findings on several diseases and elaborated on how the UPS is related to their pathological states.
Functionally heterogeneous human satellite cells identified by single cell RNA sequencing
Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations.
Non-Coding RNA Regulates the Myogenesis of Skeletal Muscle Satellite Cells, Injury Repair and Diseases
Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle formation and maintenance. As myogenic stem cells, skeletal muscle satellite cells have the ability to proliferate, differentiate and self-renew, and are involved in muscle formation and muscle injury repair. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in the regulation of gene expression during skeletal muscle myogenesis, and their abnormal expression is associated with a variety of muscle diseases. From the perspective of the molecular mechanism and mode of action of ncRNAs in myogenesis, this review aims to summarize the role of ncRNAs in skeletal muscle satellite cells’ myogenic differentiation and in muscle disease, and systematically analyze the mechanism of ncRNAs in skeletal muscle development. This work will systematically summarize the role of ncRNAs in myogenesis and provide reference targets for the treatment of various muscle diseases, such as muscle dystrophy, atrophy and aberrant hypertrophy.