Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
80 result(s) for "Silicosis - physiopathology"
Sort by:
Association of smoking cessation with airflow obstruction in workers with silicosis: A cohort study
Studies in general population reported a positive association between tobacco smoking and airflow obstruction (AFO), a hallmark of chronic obstructive pulmonary disease (COPD). However, this attempt was less addressed in silica dust-exposed workers. This retrospective cohort study consisted of 4481 silicotic workers attending the Pneumoconiosis Clinic during 1981-2019. The lifelong work history and smoking habits of these workers were extracted from medical records. Spirometry was carried out at the diagnosis of silicosis (n = 4177) and reperformed after an average of 9.4 years of follow-up (n = 2648). AFO was defined as forced expiratory volume in one second (FEV1)/force vital capacity (FVC) less than lower limit of normal (LLN). The association of AFO with smoking status was determined using multivariate logistics regression, and the effect of smoking cessation on the development of AFO was evaluated Cox regression. Smoking was significantly associated with AFO (current smokers: OR = 1.92, 95% CI 1.51-2.44; former smokers: OR = 2.09, 95% CI 1.65-2.66). The risk of AFO significantly increased in the first 3 years of quitting smoking (OR = 1.23, 95% CI 1.02-1.47) but decreased afterwards with increasing years of cessation. Smoking cessation reduced the risk of developing AFO no matter before or after the confirmation of silicosis (pre-silicosis cessation: HR = 0.58, 95% CI 0.46-0.74; post-silicosis cessation: HR = 0.62, 95% CI 0.48-0.79). Smoking cessation significantly reduced the risk of AFO in the workers with silicosis, although the health benefit was not observed until 3 years of abstinence. These findings highlight the importance of early and long-term smoking cessation among silicotic or silica dust-exposed workers.
Functional, inflammatory and interstitial impairment due to artificial stone dust ultrafine particles exposure
ObjectiveArtificial stone dust (ASD) contains high levels of ultrafine particles (UFP <1 µm) which penetrate deeply into the lungs. This study aimed to demonstrate the direct effect of UFP in the lungs of ASD-exposed workers on functional inflammatory and imaging parameters.Methods68 workers with up to 20 years of ASD exposure at the workplace were recruited from small enterprises throughout the country and compared with 48 non-exposed individuals. Pulmonary function test (PFT), CT, induced sputum (IS) and cytokine analyses were performed by conventional methods. The CT scans were evaluated for features indicative of silicosis in three zones of each lung. UFP were quantitated by the NanoSight LM20 system (NanoSight, Salisbury) using the Nanoparticle Tracking Analysis. Interleukin (IL)-6, IL-8 and tumour necrosis factor alpha (TNF-α) levels were measured by Luminex (R&D Systems).ResultsThirty-four patients had CT scores between 0 and 42, and 29 of them were diagnosed with silicosis. Content of the UFP retrieved from IS supernatants correlated negatively with the PFT results (total lung capacity r=−0.347, p=0.011; forced expiratory volume in 1 s r=−0.299, p=0.046; diffusion lung carbon monoxide in a single breath r=−0.425, p=0.004) and with the CT score (r=0.378, p=0.023), and with the inflammatory cytokines IL-8 (r=0.336, p=0.024), IL-6 (r=0.294, p=0.065) and TNF-α (r=0.409, p=0.007). Raw material of ASD was left to sedimentate in water for <15 min, and 50% of the floating particles were UFP. A cut-off of 8×106 UFP/mL in IS samples had a sensitivity of 77% to predict pulmonary disease.ConclusionsThis is the first demonstration of an association between UFP-related decreased PFT results, worsening of CT findings and elevation of inflammatory cytokines, which may be attributed to high-dose inhalation of UFP of ASD at the workplace.
Bicyclol attenuates pulmonary fibrosis with silicosis via both canonical and non-canonical TGF-β1 signaling pathways
Background Silicosis is an irreversible fibrotic disease of the lung caused by chronic exposure to silica dust, which manifests as infiltration of inflammatory cells, excessive secretion of pro-inflammatory cytokines, and pulmonary diffuse fibrosis. As the disease progresses, lung function further deteriorates, leading to poorer quality of life of patients. Currently, few effective drugs are available for the treatment of silicosis. Bicyclol (BIC) is a compound widely employed to treat chronic viral hepatitis and drug-induced liver injury. While recent studies have demonstrated anti-fibrosis effects of BIC on multiple organs, including liver, lung, and kidney, its therapeutic benefit against silicosis remains unclear. In this study, we established a rat model of silicosis, with the aim of evaluating the potential therapeutic effects of BIC. Methods We constructed a silicotic rat model and administered BIC after injury. The FlexiVent instrument with a forced oscillation system was used to detect the pulmonary function of rats. HE and Masson staining were used to assess the effect of BIC on silica-induced rats. Macrophages-inflammatory model of RAW264.7 cells, fibroblast-myofibroblast transition (FMT) model of NIH-3T3 cells, and epithelial-mesenchymal transition (EMT) model of TC-1 cells were established in vitro. And the levels of inflammatory mediators and fibrosis-related proteins were evaluated in vivo and in vitro after BIC treatment by Western Blot analysis, RT-PCR, ELISA, and flow cytometry experiments. Results BIC significantly improved static compliance of lung and expiratory and inspiratory capacity of silica-induced rats. Moreover, BIC reduced number of inflammatory cells and cytokines as well as collagen deposition in lungs, leading to delayed fibrosis progression in the silicosis rat model. Further exploration of the underlying molecular mechanisms revealed that BIC suppressed the activation, polarization, and apoptosis of RAW264.7 macrophages induced by SiO 2 . Additionally, BIC inhibited SiO 2 -mediated secretion of the inflammatory cytokines IL-1β, IL-6, TNF-α, and TGF-β1 in macrophages. BIC inhibited FMT of NIH-3T3 as well as EMT of TC-1 in the in vitro silicosis model, resulting in reduced proliferation and migration capability of NIH-3T3 cells. Further investigation of the cytokines secreted by macrophages revealed suppression of both FMT and EMT by BIC through targeting of TGF-β1. Notably, BIC blocked the activation of JAK2/STAT3 in NIH-3T3 cells required for FMT while preventing both phosphorylation and nuclear translocation of SMAD2/3 in TC-1 cells necessary for the EMT process. Conclusion The collective data suggest that BIC prevents both FMT and EMT processes, in turn, reducing aberrant collagen deposition. Our findings demonstrate for the first time that BIC ameliorates inflammatory cytokine secretion, in particular, TGF-β1, and consequently inhibits FMT and EMT via TGF-β1 canonical and non-canonical pathways, ultimately resulting in reduction of aberrant collagen deposition and slower progression of silicosis, supporting its potential as a novel therapeutic agent.
Tetrandrine slows disease progression on high-resolution computed tomography and lung function decline in artificial stone-associated silicosis: a retrospective cohort study
Background Silicosis, a progressive fibrotic lung disease caused by silica dust inhalation, is a significant occupational health concern, particularly among artificial quartz stone workers. Tetrandrine, a bisbenzylisoquinoline alkaloid, is the only plant-derived drug approved for the treatment of silicosis in China. The present study aimed to evaluate the efficacy of tetrandrine in slowing the progression of artificial stone-associated silicosis. Methods In this retrospective cohort study, patients were divided into an observation group ( n  = 53), which received tetrandrine (60 mg, 3 times daily for 6 consecutive days, followed by a 1-day break, with each cycle lasting 3 months), and a control group ( n  = 26), which received only symptomatic treatment. High-resolution computed tomography (HRCT) and pulmonary function tests (PFTs) were performed at baseline and after 12 months of treatment. Progression, stability, or improvement in HRCT findings and changes in PFT parameters were analyzed. Continuous variables and categorical variables were analyzed using the t -test and chi-square test, respectively, for statistical comparisons. Results After 12 months, 49.1% of patients in the observation group exhibited improvement in HRCT findings, compared to none in the control group, in which 84.6% of individuals exhibited progression. PFT findings improved in the observation group, whereas they significantly declined in the control group ( p  < 0.001). Patients treated with tetrandrine for more than 6 months experienced greater improvements in HRCT findings and pulmonary function than those in the control group. Adverse reactions to tetrandrine, including facial pigmentation and liver function abnormalities, were mild. Conclusions Tetrandrine significantly mitigated HRCT-detected disease progression and lung function decline in patients with artificial stone-associated silicosis, particularly after prolonged treatment. These findings suggest that tetrandrine may serve as a viable therapeutic option for managing artificial stone-associated silicosis.
Earthworm extract attenuates silica-induced pulmonary fibrosis through Nrf2-dependent mechanisms
Silicosis is an occupational pulmonary fibrosis caused by inhalation of silica (SiO2) and there are no ideal drugs to treat this disease. Earthworm extract (EE), a natural nutrient, has been reported to have anti-inflammatory, antioxidant, and anti-apoptosis effects. The purpose of the current study was to test the protective effects of EE against SiO2-induced pulmonary fibrosis and to explore the underlying mechanisms using both in vivo and in vitro models. We found that treatment with EE significantly reduced lung inflammation and fibrosis and improved lung structure and function in SiO2-instilled mice. Further mechanistic investigations revealed that EE administration markedly inhibited SiO2-induced oxidative stress, mitochondrial apoptotic pathway, and epithelial–mesenchymal transition in HBE and A549 cells. Furthermore, we demonstrate that Nrf2 activation partly mediates the interventional effects of EE against SiO2-induced pulmonary fibrosis. Our study has identified EE to be a potential anti-oxidative, anti-inflammatory, and anti-fibrotic drug for silicosis.
Experimental study on the effect of Si and P ion content in SiO2 exposure environment on the degree of pulmonary fibrosis
Silicosis is a public health issue in developing countries for long and cannot be completely cured. To study the changes of ion content with TNF-α and TGF-β expression in alveolar lavage fluid (BALF) at different time points in rats exposed to silica and to investigate their correlation with pulmonary fibrosis. 42 rats were randomly divided into control group (n = 12) and exposure group (n = 30). Tissues of right lower lungs were collected and fixed for further Hematoxylin-eosin (HE) and Masson staining. We collected the BALF to examine the inflammatory cytokines of TNF-α and TGF-β and measured the ion contents in BALF. The increase of TNF-α level was earlier than TGF-β. The content of silica in BALF was significantly increased after exposure and reached the maximum at 7 day, similar to the curve of cytokine TGF-β level. However, phosphorus ions increased quickly after gradual decline of silicon ion and roughly proportional to the curve of degree of fibrosis. Crystalline silica exposure can cause changes in TGF-β and TNF-α in BALF and accompanied with fibrosis and ions content variation. The abnormal expression of phosphorus ion may have significance in the occurrence and development of silicosis.
Excess lung function decline in gold miners following pulmonary tuberculosis
BackgroundFew if any studies of the association between pulmonary tuberculosis (TB) and lung function loss have had access to premorbid lung function values.MethodsUsing a retrospective cohort design, the study recruited employed South African gold miners who had undergone a pulmonary function test (PFT) between January 1995 and August 1996. The ‘exposed’ group comprised 185 miners treated for pulmonary TB after the initial PFT and the ‘unexposed’ group comprised 185 age-matched miners without TB. All participants had a follow-up PFT between April and June 2000. The outcome of interest was decline in lung function during the follow-up period as measured by forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1).ResultsAfter controlling for age, height, baseline lung function, silicosis, years of employment, smoking and other respiratory diagnoses, pulmonary TB during the follow-up period was associated with a mean excess loss of 40.3 ml/year in FEV1 (95% CI 25.4 to 55.1) and 42.7 ml/year in FVC (95% CI 27.0 to 58.5). Lung function loss was greater among those with more severe or later clinical presentation of TB. Breathlessness was twice as common among TB cases (OR 2.20, 95% CI 1.18 to 4.11).ConclusionThere is a need for greater clinical recognition of the long-term respiratory consequences of treated pulmonary TB. Early detection of TB would help to reduce these sequelae and remains a priority, particularly in a workforce already subject to silica dust disease. However, strategies such as dust control, worker education about TB and dust and TB preventive therapy are also needed to avert the disease itself.
Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis
In vitro and in vivo studies have demonstrated that lung cell apoptosis is associated with lung fibrosis; however the relationship between apoptosis of alveolar macrophages (AMs) and human silicosis has not been addressed. In the present study, AM apoptosis was determined in whole-lung lavage fluid from 48 male silicosis patients, 13 male observers, and 13 male healthy volunteers. The relationships between apoptosis index (AI) and silica exposure history, soluble Fas (sFas)/membrane-bound Fas (mFas), and caspase-3/caspase-8 were analyzed. AI, mFas, and caspase-3 were significantly higher in lung lavage fluids from silicosis patients than those of observers or healthy volunteers, but the level of sFas demonstrated a decreasing trend. AI was related to silica exposure, upregulation of mFas, and activation of caspase-3 and -8, as well as influenced by smoking status after adjusting for confounding factors. These results indicate that AM apoptosis could be used as a potential biomarker for human silicosis, and the Fas/FasL pathway may regulate this process. The present data from human lung lavage samples may help to understand the mechanism of silicosis and in turn lead to strategies for preventing or treating this disease.